Word2vec 是 Word Embedding 方式之一,将词转化为“可计算”“结构化”的向量, 本质上是一种降维操作。
主要包含:CBOW(continuous bag-of-word)模型和 SG(skip-gram)模型,以及hierarchical softmax 和 negative sampling 两种参数优化技术。
One-word context
通过一个上下文单词(one context word)来预测一个目标单词(one target word)。将单词用 one-hot encoder 编码,通过乘两个权重矩阵,得到输出。实际上,
h
=
W
T
X
h=W^{T}X
h=WTX 相当于取了 W 的对应某行,而
Y
=
S
o
f
t
m
a
x
(
W
′
T
h
)
Y=Softmax(W'^{T}h)
Y=Softmax(W′Th) 相当于为原字典的每个单词计算了一个得分,得到单词的后验分布。
Continuous Bag-of-Word(CBOW)
CBOW 本质上是用一个词语的上下文作为输入,来预测这个词语本身。首先将输入的上下文单词(context words)的向量叠加起来并取其平均值,接着与权重矩阵相乘得到隐藏层,再从隐藏层得到输出。
Skip-Gram
Skip-Gram 模型是根据中心单词(target word)来预测其上上下文信息(context words)。共用同一个
W
′
W'
W′,SG 模型在输出层输出了 C 个多项式分布。
(缺图片)
cbow 比 sg 训练快,sg 比 cbow 更好地处理生僻字。
Hierarchical Softmax
从隐藏层到输出的 softmax 层的计算量很大,因为要计算所有词的 softmax 概率,再去找概率最大的值。故而使用霍夫曼树来代替从隐藏层到输出 softmax 层的映射,沿着霍夫曼树从根节点一直走到我们的叶子节点的词w。
由于是二叉树,计算量从 V 变成了 log2V;霍夫曼树高频的词靠近树根,高频词需要更少的时间被找到。
Negative Sampling
输出向量的维度很高时,反向传播计算量非常巨大,故而每次只修改了其中一小部分 weight,而不是全部。根据词出现概率来选 negative sample,更常出现的词,更容易被选为 negative sample,被选中的概率为:
总结
优点:
会考虑上下文,跟之前的 Embedding 方法相比效果要更好;
比之前的 Embedding 方法维度更少,所以速度更快;
通用性很强,可以用在各种 NLP 任务中。
缺点:
由于词和向量是一对一的关系,所以多义词的问题无法解决;
是一种静态的方式,无法针对特定任务做动态优化。
资料:
《word2vec Parameter Learning Explained》论文学习笔记
《基于神经网络的词和文档语义向量表示方法研究》