数据结构源码笔记(C语言):二叉平衡树的相关操作算法

//二叉平衡树的相关运算
#include<stdio.h>
#include<malloc.h>
#include<string.h>


typedef char InfoType;
typedef int KeyType;

typedef struct node 
{
	KeyType key;
	int bf;
	InfoType data;
	struct node *lchild,*rchild;
}BSTNode;


void LeftProcess(BSTNode * &p,int &taller)
//对以指针P所指结点为根的二叉树做左平衡旋转处理,本算法结束时,指针P指向新的根结点
{
	BSTNode *p1,*p2;
	if(p->bf==0)//原本左、右子树等高,现因左子树增高而是树增高
	{
		p->bf=1;
		taller=1;
	}
	else if(p->bf==-1)//原本右子树比左子树高,现左右子树等高
	{
		p->bf=0;
		taller=0;
	}
	else //原本左子树比右子树高,需做左子树的平衡处理
	{
		p1=p->lchild;//p指向*p的左子树根结点
		if(p1->bf==1)//新结点插入在*b的左孩子的左子树上,要做LL调整
		{
			p->lchild=p1->rchild;
			p1->rchild=p;
			p->bf=p1->bf=0;
			p=p1;
		}
		else if(p1->bf==-1)//新结点插入在*b的左孩子的右子树上,要做LR调整
		{
			p2=p1->rchild;
			p1->rchild=p2->lchild;
			p2->lchild=p1;
			p->lchild=p2->rchild;
			p2->rchild=p;
			if(p2->bf==0)//新结点插在*P2处做为叶子结点的情况
			    p->bf=p1->bf=0;
			else if(p2->bf==1)//新结点插在*P2的左子树上的情况
			{
				p1->bf=0;
				p->bf=-1;
			}
			else //新结点插在*P2的右子树上的情况
			{
				p1->bf=1;
				p->bf=0;
			}
			p=p2;p->bf=0;//仍将P所指向新的根结点,并置其bf值为0
		}
		taller=0;
	}
}

void RightProcess(BSTNode *&p,int &taller)
 //对以指针P所指结点为根的二叉树做右平衡旋转处理,本算法结束时,指针P指向新的根结点
{
	BSTNode *p1,*p2;
	if(p->bf==0)//原本右子树、左子树等高,现因右子树增高而使树增高
	{
		p->bf=-1;
		taller=1;
	}
	else if(p->bf==1)//原本左右树比左子树高,现左右子树等高
	{
		p->bf=0;
		taller=0;
	}
	else//原本右子树比左子树高,需做右子树平衡处理
	{
		p1=p->rchild;
		if(p1->bf==-1)//新结点插入在*b的右孩子的右子树上,要做RR调整
		{
			p->rchild=p1->lchild;
			p1->lchild=p;
		    p->bf=p1->bf=0;			
		    p=p1;
		}	
		else if(p1->bf==1)//新结点插入在*b的右孩子的左子树上,要做RL调整
		{
			p2=p1->lchild;
			p1->lchild=p2->rchild;
			p2->rchild=p1;
			p->rchild=p2->lchild;
			p2->lchild=p;

			if(p2->bf==0)//新结点插入在*p2处作为叶子结点的情况
				p->bf=p1->bf=0;
			else if(p2->bf==-1)//新结点插入在*p2的右子树的情况
			{
				p1->bf=0;
				p->bf=1;
			}
			else //新结点插入在*p2的左子树的情况
			{
				p1->bf=-1;
				p->bf=0;
			}
			p=p2;p->bf=0;//仍将P所指向新的根结点,并置其bf值为0
		}
		taller=0;
	}
}

int InsertAVL(BSTNode * &b,KeyType e,int &taller)
{
	if(b==NULL)
	{
		b=(BSTNode *)malloc(sizeof(BSTNode));
		b->key=e;
		b->lchild=b->rchild=NULL;
		b->bf=0;
		taller=1;
	}
	else
	{
		if(e==b->key)
		{
			taller=0;
			return 0;
		}
		if(e<b->key)
		{
			if((InsertAVL(b->lchild,e,taller))==0)
				return 0;
			if(taller==1)
				LeftProcess(b,taller);
		}
		else
		{
			if((InsertAVL(b->rchild,e,taller))==0)
				return 0;
			if(taller==1)
				RightProcess(b,taller);
		}
	}
	return 1;
}

void DispBSTree(BSTNode *b)
{
	if(b!=NULL)
	{
		printf("  %d",b->key);
		if(b->lchild!=NULL||b->rchild!=NULL)
		{
			printf("(");
			DispBSTree(b->lchild);
			if(b->rchild!=NULL) printf(",");
			DispBSTree(b->rchild);
			printf(")");
		}
	}
}


void LeftProcess1(BSTNode * &p,int &taller)
{
	BSTNode *p1,*p2;
	if(p->bf==1)
	{
		p->bf=0;
		taller=1;
	}
	else if(p->bf==0)
	{
		p->bf=-1;
		taller=0;
	}
	else
	{
		p1=p->rchild;
		if(p1->bf=0)
		{
			p->rchild=p1->lchild;
			p1->lchild=p;
			p1->bf=1;
			p->bf=-1;
			p=p1;
			taller=0;
		}
		else if(p1->bf==-1)
		{
			p->rchild=p1->lchild;
			p1->lchild=p;
			p->bf=p1->bf=0;
			p=p1;
			taller=1;
		}
		else
		{
			p2=p1->lchild;
			p1->lchild=p2->rchild;
			p2->rchild=p1;
			p->rchild=p2->lchild;
			p2->lchild=p;
			if(p2->bf==0)
			{
				p->bf=0;
				p1->bf=0;
			}
			else if(p2->bf==-1)
			{
				p->bf=1;
				p2->bf=0;
			}
			else
			{
				p->bf=0;
				p1->bf=-1;
			}
			p2->bf=0;
			p=p2;
			taller=1;
		}
	}
}


void RightProcess1(BSTNode * &p,int &taller)
{
	BSTNode *p1,*p2;
	if(p->bf==-1)
	{
		p->bf=0;
		taller=-1;
	}
	else if(p->bf==0)
	{
		p->bf=1;
		taller=0;
	}
	else
	{
		p1=p->lchild;
		if(p1->bf==0)
		{
			p->lchild=p1->rchild;
			p1->rchild=p;
			p1->bf=-1;
			p->bf=1;
			p=p1;
			taller=0;
		}
		else if(p1->bf==1)
		{
			p->lchild=p1->rchild;
			p1->rchild=p;
			p->bf=p1->bf=0;
			p=p1;
			taller=1;
		}
		else
		{
			p2=p1->rchild;
			p1->rchild=p2->lchild;
			p2->lchild=p1;
			p->lchild=p2->rchild;
			p2->rchild=p;
			if(p2->bf==0)
			{
				p->bf=0;
				p1->bf=0;
			}
			else if(p2->bf==1)
			{
				p->bf=0;
				p1->bf=0;
			}
			else
			{
				p->bf=0;
				p1->bf=1;
			}
			p2->bf=0;
			p=p2;
			taller=1;
		}
	}
}



void Delete2(BSTNode *q,BSTNode * &r,int &taller)
{
	if(r->rchild==NULL)
	{
		q->key=r->key;
		q=r;
		r=r->lchild;
		free(q);
		taller=1;
	}
	else
	{
		Delete2(q,r->rchild,taller);
		if(taller==1)
			RightProcess1(r,taller);
	}
}
		


int DeleteAVL(BSTNode * &p,KeyType x,int &taller)
{
	int k;
	BSTNode *q;
	if(p==NULL)
		return 0;
	else if(x<p->key)
	{
		k=DeleteAVL(p->lchild,x,taller);
		if(taller==1)
			LeftProcess1(p,taller);
		return k;
	}
	else if(x>p->key)
	{
		k=DeleteAVL(p->rchild,x,taller);
		if(taller==1)
			RightProcess1(p,taller);
		return k;
	}
	else if(x>p->key)
	{
		k=DeleteAVL(p->rchild,x,taller);
		if(taller==1)
			RightProcess1(p,taller);
		return k;
	}
	else
	{
		q=p;
		if(p->rchild==NULL)
		{
			p=p->lchild;
			free(q);
			taller=1;
		}
		else if(p->lchild==NULL)
		{
			p=p->rchild;
			free(q);
			taller=1;
		}
		else
		{
			Delete2(q,q->lchild,taller);
			if(taller==1)
				LeftProcess1(q,taller);
			p=q;
		}
		return 1;
	}
}


int  main()
{
	BSTNode *b=NULL;
	int i,j,k;
	KeyType a[]={4,9,0,1,8,6,3,5,2,7},n=10;
	printf("\n");
	printf("创建一棵AVL树:\n");
    for(i=0;i<n;i++)
	{
		printf("      第%d步,输入%d元素:",i+1,a[i]);
		InsertAVL(b,a[i],j);
		DispBSTree(b);printf("\n");	
	}
   	printf("AVL:");DispBSTree(b);printf("\n");	

    printf("删除结点:\n");
	k=8;
	printf("删除结点%d:\n",k);
	DeleteAVL(b,k,j);
    printf("AVL:");DispBSTree(b);printf("\n");	
	
	k=2;
	printf("删除结点%d:\n",k);
	DeleteAVL(b,k,j);
    printf("AVL:");DispBSTree(b);printf("\n");
	return 0;
}

数据结构源码笔记(C语言描述)汇总:

数据结构源码笔记(C语言):英文单词按字典序排序的基数排序

数据结构源码笔记(C语言):直接插入排序

数据结构源码笔记(C语言):直接选择排序

数据结构源码笔记(C语言):置换-选择算法

数据结构源码笔记(C语言):Huffman树字符编码

数据结构源码笔记(C语言):Josephus问题之顺序表

数据结构源码笔记(C语言):Josephus问题之循环链接表

数据结构源码笔记(C语言):多项式合并

数据结构源码笔记(C语言):二叉树之叶子结点旋转销毁

数据结构源码笔记(C语言):哈夫曼树

数据结构源码笔记(C语言):集合的位向量表示

数据结构源码笔记(C语言):链接队列

数据结构源码笔记(C语言):链接栈

数据结构源码笔记(C语言):线性表的单链表示

数据结构源码笔记(C语言):线性表的顺序表示

数据结构源码笔记(C语言):栈的基本操作

数据结构源码笔记(C语言):中缀表达式

数据结构源码笔记(C语言):希尔插入排序

数据结构源码笔记(C语言):索引文件建立和查找

数据结构源码笔记(C语言):冒泡排序

数据结构源码笔记(C语言):快速排序

数据结构源码笔记(C语言):可变长度字符串的快速排序

数据结构源码笔记(C语言):基数排序

数据结构源码笔记(C语言):二路归并排序

数据结构源码笔记(C语言):堆排序

数据结构源码笔记(C语言):二叉树搜索树Kruskal

数据结构源码笔记(C语言):二叉搜索树Prim

数据结构源码笔记(C语言):最短路径弗洛伊德算法

数据结构源码笔记(C语言):深度、广度优先生成树

数据结构源码笔记(C语言):邻接矩阵转化邻接表

数据结构源码笔记(C语言):统计字符串中出现的字符及其次数

数据结构源码笔记(C语言):顺序查找

数据结构源码笔记(C语言):哈希表的相关运算算法

数据结构源码笔记(C语言):分块法查找

数据结构源码笔记(C语言):二分查找

数据结构源码笔记(C语言):二叉树遍历

数据结构源码笔记(C语言):二叉平衡树的相关操作算法

数据结构源码笔记(C语言):二叉排序树的基本操作算法

数据结构源码笔记(C语言):B树的相关运算算法

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页