前序.积分上限函数分段问题总结结论
1.由于 积分区间不满足”上限>下限“而分段
结论:积分上限函数要保证,这个x的范围最小值大于a,否则分段。 分段原则:中间段为x范围的最小值。(为保证“上限范围”始终大于“下限范围”)
注:如果为”积分下限函“数就先转为上限(加负号)在判断是否分段。
2.由于被积表达式在不同区间段不同,而分段。
即:f(x)在x不同范围表达式不同
正常分。(例题3)

1.解释结论(积分区间不满足分段)

2.相关例题精选1(积分区间不满足而分段)


3.相关例题精选2(积分区间不满足而分段)


4.相关例题精选3(由于被积表达式的不同而分段)
