定积分之积分上限函数分段问题

前序.积分上限函数分段问题总结结论

1.由于 积分区间不满足”上限>下限“而分段
结论:积分上限函数要保证,这个x的范围最小值大于a,否则分段。 分段原则:中间段为x范围的最小值。(为保证“上限范围”始终大于“下限范围”)
注:如果为”积分下限函“数就先转为上限(加负号)在判断是否分段。

2.由于被积表达式在不同区间段不同,而分段。
即:f(x)在x不同范围表达式不同
正常分。(例题3)

在这里插入图片描述

1.解释结论(积分区间不满足分段)

在这里插入图片描述

2.相关例题精选1(积分区间不满足而分段)

在这里插入图片描述

在这里插入图片描述

3.相关例题精选2(积分区间不满足而分段)

在这里插入图片描述
在这里插入图片描述

4.相关例题精选3(由于被积表达式的不同而分段)在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值