求间断点流水线

文章介绍了寻找和分类间断点的步骤,强调了考虑分母为零、无定义点及分段函数的情况。特别提到了当涉及tanx时需要考虑所有x=kπ/2的点。还通过精选例题展示了如何处理不同类型的间断点问题,包括有无范围限制的情况以及分段函数的连续性验证。
摘要由CSDN通过智能技术生成

1.结论

第一步:找间断点位置
---------1.分母为0的点
---------2.无定义的点
---------3.分段函数的分段点

第二步:求极限,并且根据极限结果判断间断点类型

注意:1)当x->0时候,lnx->像这种x=0也是其间断点,为无定义点。
---------2)当x->0时候,1/tanx为分母零点,但是请不要忽略
--------------当x->π/2时候,为无定义点,即当分母含有tanx时候注意考虑所有x=kπ/2(k为正整数)。
---------3)可去间断点的必要条件是间断点带入分子为0。(即并不是所有带入分子部分为0的间断点均为可去间断点,但是若题中说为可去间断点则可以找带入分子为0的点。)在这里插入图片描述

2.精选例题1(tanx在分母,但是无范围限制)

在这里插入图片描述

3.精选例题2(tanx在分母,有范围限制)在这里插入图片描述
4.精选例题3(遇到 ax 要注意了)

在这里插入图片描述

5.精选例题4(分段函数的分段点可能为连续点,千万要验证,别直接判定为可去)

在这里插入图片描述

6.精选例题5(分子为0的点,可能是可去间断点)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值