面向临床受众的放射组学介绍

放射组学是一个快速发展的研究领域,专注于从医学图像中提取定量特征,从而将这些数字图像转化为可挖掘的高维数据,这些数据提供了独特的生物学信息,可以增强我们对疾病过程的理解并提供临床决策支持。迄今为止,大多数放射组学研究都集中在肿瘤学应用上;然而,它正逐渐被用于一系列其他疾病。本综述为临床受众概述了放射组学,包括放射组学流程和与每个阶段相关的常见陷阱。重点介绍了肿瘤学领域的关键研究,既包括仅使用放射组学分析的研究,也包括将其与其他多模态数据流整合使用的研究。重要的是,还介绍了肿瘤学以外的临床应用。最后,我们通过展望未来的放射组学研究来总结,包括它可能如何影响我们作为放射科医生的实践。本文发表在Clinical Radiology杂志。

引言

      放射影像学是全球安全高效医疗服务的关键组成部分。它独特地提供了关于疾病的空间分辨、三维信息,这些信息是通过非侵入性方式获得的,并且在连续成像时允许进行时间比较。通常,放射影像解读以定性评估为特征,这往往基于经验并容易受主观性影响,或者使用简单的汇总指标如病变直径或代谢活性。因此,在临床工作流程中,只有一小部分丰富的定量信息从医学图像中被提取出来。放射组学领域专注于从数字图像中提取定量特征,将它们转换为可挖掘的高维数据。其驱动假设是这些特征反映了潜在的生物学特性,但在当前放射学实践的传统视觉检查中无法察觉。

      支撑放射组学的理论最初是为评估航空摄影而开发的,之后被广泛应用于各种图像分类任务。虽然早期的应用包括探索其在辅助诊断风湿性心脏病和胸部X线片肺部疾病分类方面的潜力,但其最近的大部分发展都集中在肿瘤学领域(见图1、图2)。

图片

图1 图1描述了一个圆形条形图,显示了发表在PubMed上的肿瘤学和非肿瘤学放射组学研究的数量。这些研究不包括非原始来源(综述、会议记录和勘误),非人类模型的研究,以及不针对特定癌症部位或疾病/状况的技术性文章。截至2022年5月12日,至少已发表4,074篇文章。

图片

图2 图2展示了根据发表年份分类的肿瘤学和非肿瘤学放射组学研究数量的条形图。在2012年Lambin等人提出"放射组学"一词之后,到2013年在肿瘤学领域出现了主要研究文章,到2016年在其他疾病领域也出现了相关研究——从那时起,这两个领域的文章数量都呈指数级增长。

      放射组学作为更广泛的分子生物学"组学"领域的一个分支而发展。在那里,高效低成本的高通量技术的出现、机器学习(ML)和人工智能(AI)领域的进展,以及足以处理下游信息的计算能力,使得能够从疾病分子生物学的多个维度提取大量高度复杂的数据,包括其DNA("基因组学")、RNA("转录组学")和相关蛋白("蛋白组学"),所有这些都可以从单一活检中提取。整合这些方法可以更全面地理解疾病,并有助于弥合基因型和表型之间的差距。

      与其他"组学"不同,放射组学基于放射影像学而非侵入性活检或分子检测。后两者可能只捕捉特定解剖部位或肿瘤小部分的疾病情况,获取成本高昂,对患者造成负担,而且通常难以从多个疾病部位或连续时间点获取。放射组学分析是在患者常规临床护理过程中,使用标准成像设备在单个或多个时间点获取的图像上进行的,因此不需要额外的成像,理想情况下可以覆盖疾病的整个范围,考虑到病变间的差异或异质性。放射组学的最大效用可能在于它与其他多模态数据的整合。将放射组学特征与基因组和临床病理学信息整合的模型已显示出改善疾病预后预测的能力。

      本文旨在为临床受众介绍放射组学,同时突出该领域的最新发展,展示该技术未来临床应用的愿景,以及它们将如何影响我们作为放射科医生的实践。

放射组学提取过程:超越肉眼所见

     这个提取过程的概述侧重于基于预设特征定义的"传统"放射组学分析(也称为手工制作特征),而不是基于深度学习(DL)的分析(见图3放射组学流程概览)。放射组学分析过程始于研究目标和临床问题的定义,因为这将指导要评估的最佳医学成像方式和协议、图像中的感兴趣区域,并最终指导将要执行的统计分析。

图片

图3 图3是典型放射组学流程的示意图。

从医疗扫描仪获取的放射影像首先进行分割,以将放射组学分析限制在感兴趣的体积(VOI)内,例如肿瘤病变。然后从VOI中提取描述形态和纹理特征的放射组学特征。由于计算的特征数量往往很大,特征选择旨在识别哪些特征是稳定的、非冗余的,和/或对任何内在依赖性(例如肿瘤体积)具有鲁棒性。结果是一组仅包含可靠放射组学特征的减少集("放射组学特征"),然后用于构建、训练和评估数学模型以预测结果(例如疾病分类、治疗反应和生存率)。在这个阶段,非影像数据集,如生物和临床数据,也可能被整合以开发全面的放射组学模型,可用作临床决策支持工具。

图像采集

     放射组学分析可以在多种不同技术获得的图像上进行;然而,已发表的文献中主要集中在计算机断层扫描(CT)或磁共振成像(MRI)的使用上。与图像采集相关的多个内在因素都有可能影响获得的放射组学特征,包括硬件(扫描仪品牌和型号)、采集参数(CT的管电压和管电流,MRI的场强和脉冲序列,任何技术的对比剂给药)和重建参数(滤波器、体素大小),尽管这些因素的确切影响仍然是持续讨论和研究的主题。

分割

     在进行分析之前,图像必须经过分割,这是勾画出将计算特征的区域的过程。感兴趣区域的构成将取决于研究的目的,例如,可以是CT或MRI上的肿瘤,或X射线片上的不透明区域。

     放射组学的一个主要限制一直是手动图像分割的耗时性,需要专家放射科医生逐层进行。尽管这仍然很常见,但越来越多地倾向于基于人工智能的自动分割方法,包括使用机器学习或基于神经网络的深度学习的全自动或半自动分割(后者需要手动校正),尽管这些算法的普适性仍然是一个限制因素。

     半自动分割已被证明可以提高某些放射组学特征的可重复性和稳健性;然而,手动和半自动分割都存在相当大的读者间变异性风险,例如由于对边界不清晰的病变的主观评估,这导致了不稳定的放射组学特征。因此,理想情况下,多位读者应该至少对用于放射组学研究的部分扫描进行分割,一些读者还应该在一段时间后重复他们的分割,以评估放射组学的读者间变异性和可重复性。关注显示高重复性和低读者间变异性的放射组学特征可能是特征选择过程中非常重要的一步。基于人工智能的自动分割有望部分缓解读者间变异性问题,但与人类阅片者相比,它们可能对噪声和伪影更敏感;然而,仍建议由专科读者在必要时审查和修改基于人工智能的自动分割。与人类阅片相比,基于人工智能的分割工具可能由于肿瘤外观的高度异质性、图像噪声和伪影而准确性较低。

      有多种软件包可用于图像分割和放射组学特征提取,包括开源和专有版本。例如包括3D Slicer、Microsoft高级图像标注器和MIM软件。

图像处理

      从扫描中提取的放射组学特征对体素强度值和感兴趣区域(ROI)大小的微小变化敏感,这些变化取决于局部成像协议、扫描仪品牌和型号以及分割,这可能影响放射组学预测模型在不同成像条件下的性能。因此,在分割之后,可能采取一系列步骤来协调将从中提取特征的图像。协调是一组旨在从使用不同协议获取的图像中产生一致的放射组学特征的方法。

      许多纹理特征集需要等距体素间距,以允许比较来自不同队列的数据。进行范围重分割或强度异常值过滤,以从分割区域中移除落在指定灰度级范围之外的异常体素。在特征计算之前,成像数据经过离散化,这是一个将单个体素值分组为连续区间(或"箱")的过程。

      影响产生的图像的因素,包括成像方法、协议和相关临床条件(如正电子发射断层扫描中的血糖水平)应该与使用的任何协调方法一起报告,以便在评估和比较研究时考虑这些因素。

放射组学特征提取

      医学图像分析传统上集中于对视觉可感知的"语义"特征的定性评估,如病变的大小、形状和对比增强。放射组学允许对这些特征进行定量评估,并对人眼不易察觉的"不可知"特征进行数学提取,如直方图特征和纹理分析。形状分析可以包括简单的尺寸描述;然而,也可以提取更复杂的拓扑特征,如圆度、紧凑度、尖刺度或凸度。纹理特征是ROI内体素强度的统计相互关系。一阶统计(简单的直方图特征)涉及单个体素的属性,不涉及它们的空间分布,如平均值、最大值和标准差,以及直方图偏度和峰度。更高阶的统计,如灰度共生矩阵(GLCM)特征、灰度游程长度矩阵(GLRLM)特征和灰度尺寸区域矩阵(GLSZM)特征也被用来系统地评估具有特定强度值的体素之间的空间关系。使用预定义的公式,可以使用独立软件或集成到编码环境(如Python或MATLAB)的包来计算描述这些不同矩阵的特征。这些所谓的"手工制作"特征的完整列表,包括用于计算的标准公式,可以在国际生物标志物标准化倡议(IBSI)的网站上找到。可以对原始图像应用不同的滤波器,以聚焦于图像内的不同频率域,例如小波和高斯滤波器。

     之前有报道称,不同的软件平台可能产生不完全相同的放射组学特征计算,这使得衍生的放射组学特征的跨平台再现性受到质疑。建议研究人员遵循IBSI发布的上述指南,并鼓励未来的研究人员使用符合IBSI标准的软件。

维度降低

      许多特征可以被提取,在许多常用软件包中可以提供超过100个特征,应用滤波器后可增加到超过1000个;然而,只有相对较小的一部分可能对开发用于预测临床有意义变量的放射组学特征有显著贡献。维度降低是一个识别最不冗余特征的过程,这个过程对开发可推广的放射组学模型贡献最大价值。这一步骤对避免过拟合问题至关重要,过拟合发生在模型过于紧密地对应训练数据,学习了其中的噪声而不是与稳健预测相关的潜在特征。放射组学数据集通常相对较小,提取的特征数量超过可用于分析的样本数量,导致高维数据集特别容易发生过拟合。可以采用多种策略来减少特征集。常用方法包括特征选择机制,如按数学标准(组内相关系数)排序或按重要性指标排序特征,以及特征提取方法,在这些方法中,特征空间被转换以产生一个新的、更小的相关特征集(如线性判别分析和主成分分析[PCA])。

模型构建和评估

     监督学习和无监督学习都可以应用于放射组学研究。无监督方法不一定需要标记的训练数据,旨在发现数据中隐藏的结构、模式或子概念。例如包括聚类技术和主成分分析。然后可以确定这些模式是否与所需结果有关联。

      在监督方法中,放射组学模型适合于目标变量或研究终点,例如肿瘤组织学或疾病进展,通常会纳入预测能力最强的放射组学特征。最小绝对收缩和选择算子(LASSO)是一种非常流行的监督机器学习方法,其中特征选择过程与模型构建同时进行(对训练数据应用回归分析,并删除系数为零的特征)。相比之下,在递归特征消除支持向量机(SVM-RFE)中,特征选择和模型构建是分开进行的,在选择特征后需要重新构建模型。

      监督机器学习模型在可用图像的一个子集(称为"训练"数据)上进行训练。然后,通过验证测试评估模型的性能和可推广性。存在两种验证方法。第一种方法是内部验证,使用与模型派生自的类似数据。这种方法的常见例子是保留法和交叉验证法。在保留法中,原始数据集被分为两部分,模型在训练子集上开发,然后在剩余数据上测试。对于较小的样本量,通常进行交叉验证,其中数据被分成几个"折",然后依次用于训练和验证模型。第二种方法称为外部验证,用于测试模型性能的数据在结构上与用于训练模型的数据不同,通常是从不同地区的独立机构获得的。

      通过使用从多个中心和人群获得的足够大的数据集,可以降低模型的偏差风险;然而,放射组学领域的一个长期问题是样本量小,通常只包括几百个病例。这可能有几个原因,包括手动分割的劳动密集性和对外部数据的访问受限。

模型开发指南

特征提取和选择

      不同的软件和计算方法用于从扫描中提取放射组学特征。IBSI旨在标准化计算方法,但基于平台和软件版本,定量输出仍存在差异,这可能影响预测能力。因此,IBSI合规性、特征提取、软件类型和版本都很重要,需要报告。

      特征数量越多,一些不相关特征碰巧与样本人群中的结果相关的机会就越大,造成将放射组学模型过度拟合到样本而不是整个人群的危险。验证有助于识别过拟合,因为过拟合的模型在测试数据集上表现良好,但在新数据上表现不佳。理想情况下,验证应该在外部数据集上进行,以提供对模型性能更现实的估计;然而,在已发表的文献中,外部验证的比例低至6%。限制过拟合的选择包括使用更少的放射组学特征,如在手工制作的放射组学中,使用更大的样本量,或使用无监督特征选择减少模型评估的放射组学特征数量。

评估放射组学出版物的质量

      性能指标应包括敏感性和特异性,除了准确性等汇总指标,以确保充分捕捉可能的训练偏差。包含此类细节的重要性在类别不平衡的情况下得到突出,这种情况下大部分数据仅属于一个类别标签,例如疾病存在。训练用于预测影响100人中1人的疾病的模型可能通过将所有可能的患者标记为无病来达到99%的准确率,但产生0%的敏感性,因此没有实际的临床效用。

     已发表的放射组学研究在方法学、验证和结果报告方面质量参差不齐。有一些工具可用于评估出版物的质量,如放射组学质量评分(RQS)。满分36分,包括研究设计、统计分析、结果报告以及所使用工具和数据的开放访问等方面的分数。之前的研究表明,基于RQS,当前发表文献的标准不足。然而,RQS本身并不是全面的质量评估,例如,它不包括协调技术的分数。

      深度学习方法可以绕过分割和特征提取的需求,而是直接评估扫描中每个体素或区域的预后价值,但不是本综述的重点。它们有自己固有的陷阱,人工智能工具可能会得出与预后的虚假关联,这些关联很难检查,因为深度学习工具的结果可能难以理解或从生物学角度解释。一些深度学习方法的陷阱未被RQS捕捉,包含在医学成像人工智能清单(CLAIM)中,例如,使用显著性图的可解释性或可解释性的分数。还存在其他工具,既可以帮助设计研究,也可以评估研究,如透明报告个体预后或诊断的多变量预测模型(TRIPOD)、预测模型偏差风险评估工具(PROBAST)、它们的人工智能和机器学习工具扩展TRIPOD-AI和PROBAST-AI(两者目前正在开发中),以及诊断准确性研究质量评估(QUADAS)。

图片

图4. 深度学习方法本质上是黑盒性质的。

     卷积神经网络(CNN)包含许多隐藏和复杂的层。在这些层中学到的内容可能是神秘的,通常意味着结果难以解释。为了实现可解释的人工智能,显著性图有助于可视化输入图像上哪些特征在CNN做出预测时特别重要。换句话说,这些图告诉我们图像的哪些部分对CNN得出结果最受关注。这里,我们展示了使用Python v3.8.5、TensorFlow CNN(v2.9.1)和Saliency库(v0.2.0)计算的各种显著性图。示例胸部X光片来自在线COVID-19数据库。

放射组学的临床应用

放射组学在肿瘤学中的应用

      如图1和图2所示,迄今为止,放射组学研究领域主要集中在肿瘤学研究上。放射组学工具被用于与筛查、疾病检测、诊断、分期和预后相关的研究,寻找和预测生物学相关性,预测治疗反应,以及进一步了解关键致癌过程的研究。本节将重点介绍与预测生物学相关性、分期和治疗反应相关的研究,以及整合放射组学和其他多模态数据流的研究。

预测肿瘤的组织学或分子特征及其分期

      准确的生物学亚型分类对于选择肿瘤治疗至关重要,但可能受到获取足够诊断组织和肿瘤异质性的限制。为解决这一挑战,在各种肿瘤类型中广泛研究了使用放射组学预测关键组织类型:这包括从乳腺癌的MRI、PET/CT、乳房X线摄影和低剂量CT预测雌激素受体(ER)/孕激素受体(PR)/人表皮生长因子受体2(HER2)状态,以及在肺癌诊断时从CT或PET/CT预测小细胞或非小细胞腺癌/鳞状细胞和大细胞病理。还报道了预测微血管侵犯(外科治疗肝细胞癌中无复发生存期和总生存期差的组织病理学预测因子)的放射组学预测因子。

      关于旨在预测特定基因突变状态的研究,迄今为止发表的工作主要集中在目前应用于癌症治疗的已建立的生物标志物上。这些包括影响EGFR/ALK、BRCA、KRAS/BRAF/NRAS、IDH/1p19q(共缺失)和VHL/BAP1/PBRM1的异常,分别在肺癌、乳腺癌、结直肠癌、中枢神经系统(CNS)癌和肾癌中。放射组学预测的基于基因表达的生物标志物包括乳腺癌中的OncotypeDX,以及中枢神经系统、肝胆、肺和妇科肿瘤中的关键预后转录组亚型。还报道了基于放射组学的DNA或RNA甲基化状态预测,例如胶质母细胞瘤中MGMT启动子甲基化,尿路上皮肿瘤中的m6A RNA甲基化,以及肾细胞癌和口腔、喉或咽部鳞状细胞癌中基于甲基化的亚群分类。

      随着免疫检查点抑制剂(ICI)在肿瘤学中的重要性日益突出,近年来预测ICI反应分子生物标志物的放射组学研究有所扩展。肿瘤浸润淋巴细胞(TIL)的存在与良好的肿瘤学预后和ICI反应有强烈关联,TIL-放射组学关系在乳腺癌中使用MRI或乳房X线摄影图像进行了最广泛的探索。在多种特定肿瘤类型的研究中,已经证明了放射组学预测CD8阳性T淋巴细胞存在或丰度,涵盖了肝胆、肺和胃肠道癌症,以及一项泛癌症研究,该研究在选定的肿瘤类型子集中进一步实现了ICI反应的预测意义。文献中放射组学预测的其他ICI生物标志物包括肿瘤突变负荷、微卫星不稳定性和PD-1/PD-L1/PD-L2表达的测量。

      术前分期是可能受益于使用放射组学的另一个领域。MRI放射组学可以预测头颈癌分期,而基于CT的放射组学显示与肺癌的总体分期和原发肿瘤分期有显著关联。此外,在肺癌和头颈癌患者中,添加放射组学改善了仅基于TNM分期的预后。其他几项研究显示,使用CT或PET/CT放射组学可以很好地预测肺癌患者的转移性疾病。此外,已经证明弥散加权成像(DWI)放射组学可以预测胃癌患者的T、N和总体分期,以及神经周围侵犯。

预测治疗反应

      近年来,放射组学临床应用的探索已扩展到预测特定肿瘤治疗的反应。使用MRI放射组学预测新辅助化疗或放化疗的病理和/或影像学反应在乳腺癌和直肠癌中得到广泛研究,并且在宫颈和头颈部肿瘤中也有报道。CT放射组学被用于预测胃癌、膀胱癌、肺癌和卵巢癌的一线化疗反应,以及食管癌和肺癌的新辅助放化疗反应。其他使用放射组学预测反应的肿瘤治疗类别包括肺癌中的抗EGFR疗法,乳腺癌中的抗HER2治疗,肝细胞癌中的经动脉化疗栓塞,以及多种肿瘤类型中的免疫检查点抑制剂。重要的是,多流数据整合已被证明可以改善基于放射组学的新辅助治疗反应预测。

      此外,delta放射组学领域近年来在评估治疗反应方面变得流行。delta放射组学测量随时间变化的影像特征,通常在治疗前后。这可以揭示早期的微妙肿瘤变化,这些变化先于可测量的大小变化,因此有潜力作为RECIST评估的补充工具。最近的一项系统性综述涵盖了delta放射组学在脑、头颈、肺、胃肠道、结直肠、乳腺、前列腺、肾脏和其他恶性肿瘤(肉瘤、黑色素瘤和血液系统恶性肿瘤)中评估治疗反应的应用。随着免疫治疗在肿瘤学中的日益使用,最近利用delta放射组学分析的研究显示可以很好地预测免疫治疗反应,以及有潜力在治疗早期区分假性进展和真实进展。

整合放射组学与其他数据流

      在快速扩展的放射基因组学领域中,影像特征与相关肿瘤生物学之间的关系正在积极研究中。在一系列肿瘤类型中,将放射组学与其他数据类型(包括临床和分子数据)整合已被证明可以提高生存预测的准确性,比单一模态预测更优。临床数据,如淋巴结状态、腔道/HER2阳性/三阴性亚型、组织学增殖指数或肿瘤大小,已经贡献于基于MRI放射组学的列线图方法,与单独使用影像或临床数据相比,这种方法可以更好地预测乳腺癌的无病生存期。在胶质母细胞瘤中,MRI放射组学特征被证明具有优于单独的临床和影像学模型的预后意义,但在与临床数据(包括手术切除范围、患者年龄和体能状态)整合时表现最佳。

     将预后分子标志物添加到临床和放射组学数据中,与预测性能的逐步增强相关,例如在胶质母细胞瘤中将IDH突变或MGMT启动子甲基化状态与MRI放射组学和临床特征整合。常规循环标志物的临床测量也可以提高放射组学的准确性,例如在基于MRI和CT的前列腺癌和胰腺癌放射组学-临床建模中包括前列腺特异性抗原(PSA)和癌胚抗原(CEA)水平;然而,在卵巢癌患者中,当包括循环肿瘤DNA(ctDNA)评估时,基于放射组学、临床数据和CA125预测新辅助化疗反应的能力并没有显著改善。基因表达数据与CT、MRI或PET放射组学的整合也被证明可以提高各种肿瘤类型的生存预测准确性。

放射组学的非肿瘤学应用

      放射组学潜在地适用于许多疾病,唯一的要求是包含影像学感兴趣体积和结果的数据集。特别是来自癌症影像学项目的支持和肿瘤学数据集的更大可用性导致其他应用较少且不太成熟。尽管肿瘤学之外的大多数放射组学研究还处于起步阶段,但在各种其他疾病中对其效用的兴趣日益增长(见图2),在几个领域已取得了有希望的结果(见图5概述放射组学的非肿瘤学应用)。

图片

图5. 放射组学的非肿瘤学应用。

神经系统

      急性缺血性和出血性卒中的诊断和分类已得到证实,同时多种预后应用也显示出潜力。出院时的功能结果、认知障碍评估、缺血转化为出血的风险、血肿扩张风险和恶性脑水肿风险都已被研究。CT/CT血管造影(CTA)放射组学可能指示溶栓或机械血栓切除后再通的可能性,这最终可能防止患者接受高风险但可能无效的治疗。

     多发性硬化(MS)的纹理分析最早在1999年被探索,当时Mathias等人分析了监测脊髓病变的潜力。MRI上更大的纹理异质性被证明是组织完整性的潜在测量,与更严重的髓鞘和轴突病理相关。随后多项研究表明,活动性病变可以与慢性、惰性斑块区分开来,并可能允许早期诊断。其他神经系统应用包括帕金森病、阿尔茨海默病和精神分裂症。

心血管系统

     应用于冠状动脉粥样硬化斑块的放射组学已被证明可预测主要心脏事件,并可能区分晚期和早期斑块。它甚至可以识别特定心血管风险因素的独特形态学模式,展示了个体化管理的潜力。

    心脏CTA放射组学可能允许在心脏MRI不可用的情况下准确评估心肌,并减少甚至避免使用钆。多项研究表明,可以在横断面成像上诊断和亚分类急性和慢性心肌梗死、心肌炎和心肌病。将这些技术应用于超声心动图可能允许检测左心室重塑,并可能能够在CT上区分疑似人工瓣膜梗阻患者的瓣膜增生组织和血栓或赘生物。

     研究还证明了放射组学在血管疾病中的潜在应用,例如预测腹主动脉瘤扩张和破裂的风险以及血管内主动脉修复(EVAR)后的结果,而颈动脉超声图像的纹理分析已被证明可以确定颈动脉疾病的卒中风险。

呼吸系统

      自冠状病毒病2019(COVID-19)大流行开始以来,已有大量研究检查放射组学的潜在用途。使用胸部X线和CT尝试诊断和监测疾病,预测严重程度或机械通气或死亡的需求。区分COVID-19与流感和其他非COVID肺炎也可能是可能的;然而,研究标准未能允许在迄今为止的大流行期间有意义的临床采用。

     慢性阻塞性肺病(COPD)的诊断、严重程度和预后可能通过放射组学分析预测,结果与肺功能检查相对应。可能可以分层发展该病的风险并识别亚临床吸烟相关肺损伤。最终,它可能允许更准确地识别疾病表型,从而允许更个性化和有针对性的治疗。

     类似的应用可能在间质性肺病(ILD)中发现,研究尝试诊断特发性肺纤维化(IPF),区分多种类型的ILD,并量化肺癌风险。

胃肠和肝脏系统

      一项前瞻性、多中心研究发现,弹性成像的放射组学评估是肝纤维化组织学分期的优秀替代,优于常规二维剪切波弹性成像。对比增强CT的放射组学可能提供类似的见解,异质性的微妙变化与纤维化的存在和严重程度相对应。此外,放射组学可能提供诊断临床显著门脉高压的无创机会。

     放射组学可能能够帮助区分克罗恩病和溃疡性结肠炎。在克罗恩病中,可能可以识别手术风险较高或对生物制剂治疗反应丧失的患者,帮助临床医生识别需要更严格监测或不同治疗方案的患者。

非肿瘤学整合放射组学与其他数据流

      虽然迄今为止非肿瘤学多组学整合有限,但放射基因组学在识别最有可能发展为阿尔茨海默病的轻度认知障碍患者方面显示出前景,可能允许个性化治疗以减缓进展。在IPF中,放射基因组学方法为疾病进展和治疗反应提供了额外的见解。

      应用于CT上血管周围脂肪组织的放射转录组学可能是组织炎症的标志,在冠状动脉疾病和COVID-19中具有潜在的预后应用。此外,这种方法表明,COVID-19的alpha变体比原始菌株引起更高的血管炎症,用地塞米松治疗这些患者可改善结果。

结论

     英国皇家放射学院认为,医学人工智能时代的到来将预示着自70多年前NHS成立以来医疗保健提供方式最根本的变革。在这些与人工智能相关的健康技术中,放射组学可能会被证明是影响最大的,因为它允许我们弥合医学影像和个性化医疗之间的差距。

      迄今为止,研究一直集中在肿瘤学应用上;然而,本综述突出了放射组学技术在一系列其他疾病中的日益增加的使用。

     为了创造具有临床效用的工具,需要前瞻性试验在外部数据集上验证放射组学特征。因此,安全地在中心之间或公开共享数据集是该领域进一步发展并使基于放射组学的人工智能工具过渡到临床工作流程的必要条件。还需要按照IBSI建议的标准化分析。虽然图像采集的标准化会有益,但在不同的供应商和扫描仪之间不太可能实现。因此,研究识别保持稳健的预测性放射组学特征,特别是针对图像采集和重建的差异,比以往任何时候都更加重要。此外,所有放射组学研究都需要异质性数据集用于模型训练和测试,以及完全独立的数据集用于验证。对于临床环境,需要一种跨学科方法,结合关键利益相关者(包括放射科医生、病理学家、肿瘤学家、医学物理学家、影像科学家、数据科学家和患者)的知识和见解,以加速基于放射组学的工具渗透到患者护理中。

      作为医学影像领域的专家,放射科医生处于独特的地位来领导这些发展,这将增强我们的诊断技能。这将要求放射科医生自学基于放射组学和人工智能的工具是如何设计和测试的基础知识,以便我们可以在其开发中发挥积极作用,并代表我们的患者评估和审查其效用。鉴于这些工具在未来医疗保健提供中的核心地位,可能需要对本科医学和放射学培训课程进行改变。这些努力将强化放射学在未来的价值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值