Annual Review of Psychology:大脑间同步(下)

前文主要讲述了第二人称神经科学研究实时社会互动中大脑与行为的机制,聚焦跨脑同步对沟通、社会协调与心理健康的作用,强调互动双方行为与神经同步的动态关系。本文接着前文对跨脑同步(INS)研究揭示其在促进沟通、学习、社会互动及心理健康中的关键作用,同时探索行为、认知与神经机制,助力理解人与人之间的动态协同与障碍进行了概述。

     本文上半部分,可点击以下链接浏览:

        

Annual Review of Psychology:大脑间同步(上)

群体动态

      重要的是,尽管上述大多数研究都聚焦于二元同步,但群体成员之间的跨脑同步(INS)对于沟通、学习和合作都非常重要,且可能呈现不同的动态特征——例如,由于领导者与追随者角色的不平衡,以及内群体与外群体因素的影响。Jiang等人(2015)的研究调查了个体间INS的出现是否与领导者的涌现相关,即最初无领导的小组是何时以及如何决定选择一个人作为领导者。研究结果表明,领导者-追随者配对的INS高于追随者-追随者配对。同时,在领导者发起沟通时,领导者-追随者配对的INS要高于追随者发起沟通时。INS互动神经同步)与领导者的沟通技巧相关,而非沟通频率,作者将此解释为成功领导者似乎具备的社交互动中时机把握和质量特征的重要性证据,这些特征使他们能够有效地影响他人。

      在Yang等人(2020)进行的另一项重要研究中,研究者在一项大规模fNIRS研究中考察了INS指标,他们将546名个体组织成81组三对三的群际竞争。他们采用内群体联结操纵,证明了INS的增强导致参与者向内群体成员给予更多金钱,并且更愿意付出金钱以超越竞争对手。这些结果突显了INS的重要性,但也表明跨脑同步并不总是促进亲社会行为,它也可能加剧内群体与外群体的行为区分。虽然内群体联结可以增加INS,但其他团队研究表明,在预测集体团队表现时,内群体认同感和INS具有可分离的贡献。具体而言,Reinero等人(2021)让参与者戴上脑电图(EEG)帽,在团队合作或个人工作的情况下解决问题。这项研究的一个优势在于所有任务都是通过电脑界面完成的,团队和个人条件下的实验界面条件保持一致,因此任何刺激驱动的同步在不同组别间都具有可比性。研究发现团队表现优于个人,而团队的集体表现可以通过全脑INS来预测。

跨脑同步塑造神经认知和社会发展与学习

生物行为同步塑造情感社会发展

       生物行为同步是婴儿和照顾者早期社会互动的一个定义性特征。在2个月大时,婴儿就对照顾者的非应答性反应表现出敏感(Murray & Trevarthen 1985)。这些面对面的互动为情感共享、交流信号交换、理解他人和自我,以及发展自我调节能力奠定了基础。大多数关于生物行为同步的研究都集中在父母和他们的孩子身上(最常见的是母亲和婴儿)。父母和孩子之间的生物行为同步不是简单的模仿,而是涉及父母和孩子之间对社会信号、情感状态和交流意图的协调调谐(Feldman 2012)。

     通常,这种同步在母婴二人组中是通过识别协调的积极互动期来编码的,在这期间母亲在婴儿表现出积极情感、发声和注视时协调注视和社交触摸(Atzil等, 2011, Leclère等, 2014)。母亲的敏感度,或称为父母的反应性,促进了孩子和照顾者之间的协调、同步互动,并对儿童社交互动和认知能力的发展(Landry等, 1998, Legerstee等, 2007)以及他们的情感识别和调节能力(Feldman 2012, Bell 2020, Yaniv等, 2021)产生重要影响。父母和孩子之间的同步可以通过行为协调以及生理唤醒[例如,呼吸窦性心律失常(RSA)]来测量(Bell 2020)。母子之间的RSA同步与他们在互动过程中的情感有关(Ham & Tronick 2009, Capraz等, 2023),并且会受到风险状态的影响,比如虐待史(Miller等, 2023)。这些生物行为同步的效应是长期的:母婴行为同步可以预测成年后的情感神经识别(Yaniv等, 2021)。在亲子关系之外,幼儿之间的同步促进亲社会行为(Kirschner & Tomasello 2009),如果婴儿此前与成人进行过同步运动,他们更可能帮助该成人(Cirelli等, 2014)。因此,儿童与父母或同伴之间的行为和情感的同步协调对社会、情感和认知发展具有强大且持久的积极影响。

      随着无创神经成像技术(包括fNIRS和EEG)的进步,可以在实时社会互动过程中测量父母和孩子(包括婴儿)之间的同步神经活动(或INS)(Nguyen等, 2020a, Wass等, 2020, Turk等, 2022, Alonso等, 2024)。当行为同步程度高时,INS也较高,包括当成人和儿童进行直接注视(Leong等, 2017, Piazza等, 2020)以及在自然对话中轮流发言时(Nguyen等, 2021)。情感也调节INS(互动神经同步)因此高度积极(而非消极)情感同步的时期与内侧和外侧额叶以及颞顶脑区的高INS相关(Santamaria等, 2020)。此外,母亲的敏感度,即母亲行为对孩子的协调,可以预测母婴神经同步,而母亲的侵入性,即母亲在孩子不接受期间与其互动,则预测较低的同步(Endevelt-Shapira & Feldman 2023)。从这些数据来看,INS可以被简单地解释为识别行为或情感同步的一种补充方法,但它更客观,不需要详细的逐帧编码。确实,共享的视听环境和协调的行为会产生神经活动的相似性,但这并不一定表明两个人之间存在相互理解或实时对齐。然而,除了共享环境之外,神经同步还可以反映仅凭行为无法识别的概念对齐。这种概念对齐包括在婴幼儿丰富的学习环境中出现的共享视角、目标或情感状态以及信息传递(Wheatley等, 2012, Hasson & Frith 2016)。

     方法学可以帮助区分出反映互动伙伴之间动态的同步,而不仅仅是共享环境特征。例如,使用格兰杰因果关系和图论可以识别父母和孩子跨脑网络组织之间的方向性影响(参见标题为"测量神经同步的方法"的专栏),这些影响超出了仅由共享环境造成的效应。例如,当母亲和婴儿在EEG数据记录期间参与社会参照任务时,在母亲表现出积极情感相比消极情感时,父母和孩子跨脑网络节点之间表现出更大的整合(Santamaria等, 2020)。换句话说,当母亲表现出积极情感时,孩子和父母之间的脑区神经活动波动更加相似。使用定向连接性分析,Santamaria等(2020)发现,在积极情感期间,母亲对跨脑密度(即,大致指脑间连接的程度)的影响更大,而在消极情感期间,婴儿对跨脑密度的影响更大。

测量神经同步性的方法

      如需更全面的神经同步性方法综述和讨论,我们建议读者参考 Hakim 等人(2023)的研究。我们使用的分类来自他们的系统性综述。这里我们重点介绍该综述中讨论的用于研究跨大脑同步性的常见分析方法。

      相关性分析:相关性方法用于测量时间序列之间的时间关系,也被称为个体间功能连接。这是 fMRI 数据最常用的同步性分析方法,其他模态也会使用。相关性可以是非交互式的(神经相似性或个体间相关)或交互式的(INS;见图1)。分析可以覆盖整个交互期间,也可以聚焦于交互过程中的时间窗口来评估同步性随时间的变化。根据研究问题的需要,相关性可以是同步的或滞后的。

       回归分析:基于一般线性模型(GLM)的回归方法在 fMRI 和 fNIRS 研究中更为常见。这种方法使用一个人的大脑活动来预测另一个人的大脑活动,即跨大脑 GLM。研究者也可以通过观察时间滞后来识别伙伴之间的领先-滞后关系。这种方法的优势在于可以将行为作为单独的回归因子纳入预测模型中。

       相干性分析:相干性是衡量参与者之间在频域或时频域相关性的指标。这种方法在 fNIRS 研究中最为常见。小波变换相干(WTC)是一种常用方法,它将时间序列数据转换到时频域,以便计算随时间变化的频段相关性。

       相位同步性:由于 EEG 具有高时间分辨率,这种方法仅用于 EEG 研究,它检验两个信号的相位同步程度。加权相位滞后指数(wPLGI)是这种方法的一种实现。通过仅检验非零相位滞后,该方法使研究人员能够识别独立于共享环境效应的同步性。

       因果性分析:这些方法使用格兰杰因果检验、动态因果建模或偏向性相干等方法来确定一个大脑对另一个大脑的因果影响。因果方法在验证同步性是一种涌现属性,且源于大脑之间的相互影响而非环境共享特征的对齐时很重要。

      需要明确的是,二元互动过程中的这些神经影响是通过可观察的行为发生的(Semin & Cacioppo 2008),这些行为随后影响概念模型,因此在未来的研究中将行为编码纳入跨脑定向连接模型将加强我们对同步在情感发展中的机制作用的理解。滞后分析方法是另一种识别超出共享环境效应的神经同步的手段。Piazza等(2020)在面对面互动中使用滞后被试间相关方法与fNIRS和详细的行为编码,在这个互动中成人实验者对婴儿进行阅读和唱歌,他们发现行为同步(例如,相互注视期)之前是成人实验者和孩子前额叶皮层的激活。因此,在这里INS(互动神经同步)可能反映了对共同行为的预期,而不是共享行为的结果。在另一个例子中,一个避免时间0(即同时的神经反应)的加权相位滞后指数用于检验跨脑同步,识别出脑间的EEG相位相干性,这种相干性不是与感觉事件时间锁定的,而是反映了社交伙伴之间的生物行为调谐(例如,Endevelt-Shapira & Feldman 2023)。

      也许比研究什么驱动INS(互动神经同步)更有趣的是研究INS在发展过程中预测什么。与行为证据一样,父母-孩子社会互动期间的同步神经活动与儿童的情感调节能力相关(Reindl等, 2018)。问题解决或合作任务提供了一个有用的环境来评估同步的变化及其与情感调节的关系。总的来说,在合作情境下的INS高于竞争情境(Reindl等, 2018, Miller等, 2019),而且神经同步预测问题解决表现的能力超出了单纯的行为同步(Nguyen等, 2020b)。INS这种更强的预测能力可能是由于其能够捕捉伙伴之间共享目标的一致性。此外,与陌生人合作相比,与父母合作时的神经同步最强,这表明对伙伴的预先理解或相似性促进了超出单纯行为协调的同步(Reindl等, 2018, 2022)。实际上,在顺序双脑研究中,父母和青少年功能性脑网络组织的相似性预测着他们全天情感波动的相似性和青少年的情感能力(Lee等, 2017)。问题解决任务,如七巧板拼图,也可以被操纵以引发更高或更低水平的挫折感,因此它们提供了一个机会来测试儿童情感调节是在同步的父母-孩子互动中形成的假设(Feldman 2012)。在学龄前儿童和父母完成一个令人沮丧的拼图任务后,他们获得了一个恢复性玩耍时期。在恢复期间,母子在外侧前额叶皮层的神经同步预测了孩子(而不是母亲)的易怒气质,较低的INS预测较高的易怒性。较高的儿童易怒性也与母子之间较低的行为同步相关,这表明儿童特征也可能影响同步情境的机会,导致共同调节和发展自我调节的机会减少(Quiñones-Camacho等, 2020)。由于这项研究是相关性研究且只有一个时间点,无法区分儿童易怒性与母子之间人际行为和INS的方向性效应。

      迄今为止,在唯一一项检验神经同步对儿童社会情感或心理健康结果的纵向效应的研究中,Quiñones-Camacho等(2022)使用相同的挫折和恢复任务设计,证明了4-5岁时更大的父母-孩子前额叶皮层神经(而不是行为)同步预测随后一年半内内化行为的更快减少。这第一个关于父母-孩子神经同步与行为结果关系的纵向证据很重要,因为它突出了父母-孩子神经同步在发展结果中的潜在因果作用。未来的纵向研究可以纳入分析技术,检验多个跨脑区域的滞后相干性或影响方向性,以及行为和人格测量,以检验在互动过程中反映脑间一致性的因素是否能独特地预测儿童结果,超出共享环境或儿童特征的影响。

神经同步促进终身社会学习

     社会学习是最有力的学习机制之一,尤其是在早期生活中(Herrmann等, 2007)。当照顾者和婴儿将注意力协调在共同感兴趣的物体上时(即,参与联合注意),婴儿会学习关于该物体的知识(例如,物体的名称、功能、对物体的情感等)(Mundy & Newell 2007)。参与联合注意本身就是一种同步活动,涉及相互注视和指点的明示和交际线索、共享情感、注意力和心理状态的协调,以及社交伙伴之间的信息传递。这种社会学习机制继续在我们的一生中塑造我们的注意力、知识、欲望和偏好(Redcay & Saxe 2013, Mundy 2018)。

      互动同步可能促进学习,而社会信号,如相互注视,可能是驱动这种INS的机制(Leong等, 2017, Wass等, 2020, Leong等, 2021)。具体来说,人际神经耦合学习(LINC)假说(Leong等, 2021)表明,像相互注视这样的明示线索可能会重置学习者(或接收者)的神经振荡节律以匹配发送者的节律,这允许最佳的信息传递。这种重置将反映在更大的跨脑相位同步中(Leong等, 2019, 2021)。因此,INS可以提供超出仅从理解单脑学习机制所能学到的独特解释力(例如,Leong等, 2019, Dikker等, 2021, Pan等, 2022)。例如,在社会参照任务中,每次试验的学习可能性(即,与物体相关的情感)与父母和孩子之间更大的INS相关,但学习效价(即,婴儿选择积极或消极标记物体的倾向)则不相关。另一方面,学习效价与婴儿脑内连接性相关,而与脑间连接性(即INS)无关(Santamaria等, 2020)。这些发现强调了采用双脑、第二人称神经科学方法来完全理解社会过程(包括社会学习)的重要性。我们从他人那里学习的程度取决于我们自己和他们,只有双脑视角才能识别和表征这种相互影响。

     虽然学习在社会互动中自然发生,但正式教学(如在课堂上)也依赖于社会学习机制,如注意力的协调和心理状态的表征,以实现成功的信息传递。这些协调过程可能反映在教师和学习者之间的INS中。关于社会学习和INS的大量工作是在成年人中进行的,或通过考察教师和学生进行的,研究表明教师和学生之间更大的INS与更高的学生参与度(Dikker等, 2017, Bevilacqua等, 2018, Davidesco等, 2023)和更好的学习结果(Dikker等, 2017; Davidesco 2020; Pan等, 2021, 2022; Zhang等, 2022; Davidesco等, 2023)相关。与婴儿研究一样,即使脑内指标没有预测作用,INS也能预测学习(Davidesco等, 2023)。

     关于INS为何与学习相关,已经提出了几种机制。同步可能反映行为一致性,而这种一致性本身(而不是脑间同步本身)可能促进学习(Pan等, 2022)。除了行为一致性之外,INS可能反映两个个体处于共享注意状态。这种共享注意状态可能会放大视听输入的处理,从而促进对这些共享物体的学习和记忆(Shteynberg 2015, Dikker等, 2017)。另一种解释是INS代表每个人自己的神经活动和对社交伙伴的预测。然而,在教学过程中,教师对学生思维的表征和预测可能对有效的信息传递更为关键。

      检验滞后关系可以识别这些领导者-跟随者模式。例如,使用fNIRS的Zheng等(2018)预测,最佳的教学结果会反映在教师和学生大脑之间的滞后相干性中,因为教师会在有效传递信息之前表征学习者的思维(预测-传输假说)。具体来说,教师的颞顶联合和学生10秒后的前侧颞叶皮层之间的相干性预测更好的教学结果(Zheng等, 2018)。类似地,Pan等(2018)在互动歌曲学习任务中证明,INS预测歌曲学习,而且学习者最能预测指导者的脑活动。然而,虽然INS可能反映这些一致性和相互预测过程,但跨脑同步是否在社会学习中发挥因果作用仍然是一个悬而未决的问题。动物和人类的新型多脑方法开始揭示同步的因果作用(例如,Liu等, 2023)。Pan等(2021)使用多人经颅交流电刺激来显示INS与社会学习有因果关系。他们在主动歌曲学习任务中同步刺激教师和学生的下额回,这是一个对歌曲学习重要的区域。这种同步刺激导致身体运动的自发同步和改善的学习结果。此外,自发的身体同步部分调节了INS与学习结果之间的关系。虽然这项研究只包含15名学生,因此在解释时需要谨慎,它提供了一种识别因果机制的有希望的方法。

精神病理学或社会互动障碍的核心特征是跨大脑同步性降低

     精神障碍普遍以社交困难为特征。此外,社交互动既可以作为一个保护因素,有助于提高生活质量和心理健康,也可以在社交压力和排斥的情况下,作为一个风险因素增加出现心理健康问题的概率。自闭症谱系障碍可以被视为社交互动障碍的典型案例(Schilbach 2016),因为它的定义特征是社交互动和沟通的困难。尽管如此,大多数研究都集中在单个大脑或个体上来理解自闭症的社交挑战。与此相反,我们提出了二元情境在驱动自闭症和其他精神病理状况下的行为反应、神经反应和跨大脑同步性方面的重要性。此外,专注于社交互动且具有高生态效度的实验任务,在客观评估那些具有最大治疗相关性的社交障碍方面可能更为敏感,且当与计算方法相结合时,可用于开发更敏感的非典型社交互动神经特征(如Lahnakoski等人2022)。例如,研究表明,当两个自闭症者相互互动时,社交障碍程度较低(甚至完全消失),相比之下,当一个自闭症者和一个非自闭症者互动时情况则不同。这些临床观察可能与表明自闭症个体对其他自闭症者表现出最大程度同理心的证据有关(Komeda等人2015),这可能是由于更大的相互理解。类似地,非自闭症个体更容易推断非自闭症个体的心理状态,而不是自闭症个体的心理状态(Edey等人2016)。

      从更抽象的层面来看,这些发现可能表明,自闭症以及其他精神病理状况中的社交障碍,可能与互动伙伴之间的(不)相似性更密切相关,而不是与每个个体的特征相关,我们将其称为社交互动不匹配假说(Bolis等人2017, Redcay & Schilbach 2019)。伙伴之间差异较大的二元组中出现更大社交困难的证据,可能可以解释为:当伙伴与自己相似时,可以更容易和准确地预测互动伙伴的行为,正如之前讨论的那样(Friston & Frith 2015, Dziura等人2023)。例如,行为研究表明,自闭特征的人际差异值与友谊质量的关系比自闭特征本身更密切(Bolis等人2021)。换句话说,互动伙伴之间的相似性似乎与互动成功相关,这与最近一项显示伙伴之间不同变量相似性的元分析结果一致(Horwitz等人2023)。行为研究还表明,在包含自闭症个体的二元组中,行为同步性降低(Glass & Yuill 2024;综述见McNaughton & Redcay 2020)。与不匹配假说一致的是,证据表明自闭症配对之间的行为同步性高于混合神经类型[即自闭症(AUT)-神经典型(NT)]配对(McNaughton等人2023;但另见Georgescu等人2020)。

     在这里,超扫描技术有可能为社交互动障碍提供独特的新见解,并可能有助于解决自闭症异质性的某些方面。事实上,近年来已有多项超扫描研究对自闭症的人际神经同步性(INS)进行了研究,大多数研究表明,在由自闭症(AUT)个体和神经典型(NT)个体组成的二人组中,人际神经同步性降低。Tanabe等人(2012)使用超扫描功能磁共振成像(fMRI)研究了自闭症患者和非自闭症者之间基于实时注视的社交互动的神经相关性。研究结果表明,在神经典型个体二人组中,右侧下额回的人际神经同步性高于自闭症-神经典型混合二人组。Quiñones-Camacho等人(2021)使用功能性近红外光谱(fNIRS)多脑扫描技术研究了NT实验者与有无自闭症的成年人之间对话时的神经同步性。fNIRS测量表明,与自闭症个体相比,NT个体在颞顶联合区与实验者表现出更多的神经同步性。颞顶联合区较低的神经同步性与较高的社交障碍相关。类似地,Key等人(2022)表明,较低水平的INS与自闭症青少年的社交困难行为症状增加有关。Hirsch等人(2022)使用fNIRS多脑扫描研究了面对面眼神接触期间的INS,并证实了自闭症中的跨大脑相干性降低。关于已证实自闭症中INS降低的研究,社交互动不匹配假说可能作为这一发现的可能解释,基于人际差异可能破坏同步化过程的假设。事实上,最近的研究比较了在自闭特征方面配对或不配对的二元组(即高/高、低/低或低/高)之间的神经同步性和行为模式。虽然两个个体都具有高自闭特征的二元组表现出与其他两组不同的沟通行为,但他们的神经同步性高于其他类型的二元组(Peng等人2024)。未来的研究可能通过系统地调控二元组之间的人际差异,来进一步解决这个问题,以评估其对社交互动的影响及其与两个互动伙伴大脑结构和功能的关系。此外,未来的多脑扫描研究应该包括AUT-AUT二元组,以研究与AUT-NT二元组相比是否会观察到相似或更高水平的INS,正如社交互动不匹配假说所建议的(Bolis等人2023)。

     如前所述,除自闭症外的其他精神障碍也以社交互动困难为特征,这些困难也可能与行为和/或神经同步性的扰动有关。例如,已知精神分裂症(SCZ)患者在社交知觉、面部情绪识别、心智化和人际协调方面表现出各种异常(Green等人2019;最近的综述文章见Pan等人2023)。已知异常的社交处理会对SCZ中的人际互动产生负面影响,导致社交融入和生活质量下降(Couture等人2006)。最近一项关于SCZ行为同步性研究的综述表明,在不同模态中都存在同步化障碍,这些障碍在SCZ患者的亲属中也能发现(Dean等人2021)。Kupper等人(2015)证实,SCZ所谓的阴性症状的严重程度(即意志缺乏、快感缺失、社交退缩和情感平淡)与较低的人际同步性有关。阴性症状是SCZ的核心方面,对抗精神病药物反应不佳(Correll & Schooler 2020),并且占患者长期残疾和不良预后的很大部分。

      其他研究表明,SCZ患者与非患者之间受损的行为同步性可以通过亲社会启动得到改善(Raffard等人2015),这可能指向一个重要的新研究方向。关于SCZ社交缺陷的神经相关性,单脑神经影像研究已证实了默认模式网络(DMN)的连接差异,以及可能有助于人际协调的动作观察网络的差异(Schilbach等人2016, Saris等人2022)。此外,研究表明颞顶皮层参与了SCZ中常见的控制自我和他人相关表征的缺陷(Eddy 2016)。尚不清楚颞顶联合区的异常处理是否与SCZ中的INS差异有关。Wei等人(2023)最近的一项研究使用fNIRS多脑扫描研究了NT群体和精神病高危(CHR)群体。研究发现,在合作任务中,与NT-NT二元组相比,CHR-NT二元组在右侧下额回表现出降低的INS。有趣的是,CHR-NT组降低的INS水平与CHR状态特有的猜疑和被害观念症状评分相关。未来的多脑扫描研究将有助于理解先前发现的SCZ激活差异与其对INS可能贡献之间的关系。

     抑郁症是最普遍的精神健康问题之一,已知通过导致社交退缩而严重影响社交互动行为。此外,慢性或持续性抑郁症病例已被明确与社交互动困难联系起来。事实上,认知行为分析系统心理治疗(CBASP)已专门针对这类患者群体的需求进行调整,这些患者有时被描述为与社交环境脱节,据推测是由于形成性关系中的困难影响了他们对互动伙伴的期望。这些困难可能阻止慢性抑郁症患者获得那些有助于缓解抑郁症状并增强自我效能感和自我价值感的积极社交体验。事实上,在神经层面上,抑郁症已被与社交认知和动作观察相关的大脑网络以及关系事件回忆联系起来(Wade-Bohleber等人2020; Schilbach等人2014, 2015)。例如,在父母-婴儿互动领域已开展了抑郁症行为同步性研究,已经确立父母的抑郁会对对婴儿发育重要的二元同步性产生负面影响(如Leclère等人2014, Golds等人2022)。

      正如我们所见,新出现的证据表明精神疾病会对人际同步化产生负面影响或与较低水平的人际同步化相关。因此,恢复患者和治疗师之间的同步性似乎是心理治疗的一个重要目标,已知患者和治疗师会自发地同步他们的行为、声音方面,甚至心率等生理过程,而行为同步性与治疗成功相关(最近的综述见Atzil-Slonim等人2023)。Koole 和 Tschacher(2016)的模型表明,患者与治疗师之间的同步可能促进治疗联盟的形成,并有助于患者情绪调节能力的改善以及与治疗结果相关的变量。根据这一模型,治疗联盟基于患者与治疗师大脑的耦合,而行为同步有助于建立这种人际神经同步(INS)。通过借鉴发展心理学,Koole 和 Tschacher(2016)描述了人际同步可以被视为一种外部情绪调节形式,这种形式在整个生命周期中持续发挥作用,并构成心理治疗的重要部分。Xie 等人(2016)对单个大脑的研究表明,社会诱导的认知情绪调节(例如心理治疗师帮助参与者降低情绪)依赖于默认模式网络(DMN)关键节点的差异激活。换句话说,可以推测 DMN 可能是心理治疗干预中 INS 的潜在候选网络。DMN 中的 INS 可能促进那些复杂的社会认知过程和共享的心理表征,而这些在心理治疗中起着重要作用,并有助于制定实现长期变化所需的目标和意图。一项重要的超扫描研究由 Bilek 等人(2017)完成,研究发现,在探讨边缘性人格障碍(BPD)患者的研究中,患者与健康对照组的配对中,颞顶联合区的神经耦合较低;但在接受心理治疗后,当患者病情缓解且不再符合 BPD 的临床诊断标准时,这种异常现象不再存在。这表明,超扫描可能有助于生成与精神健康相关的状态标志物,通过追踪治疗期间的神经同步差异来提供相关信息。

跨大脑神经同步的机制

      正如我们上面所回顾的,行为、认知和人格因素驱动着社交伙伴之间的跨大脑神经同步(INS)(图2)。互动性和非互动性同步都受到两个个体在人格特征和共享观点或概念一致性方面的相似程度的影响(Lahnakoski等人2014, Yeshurun等人2017, Matz等人2022)。例如,人格特征(Matz等人2022)、易怒性(Quiñones-Camacho等人2020)和不确定性不耐受(van Baar等人2021)可以预测个体之间的神经同步性(无论是神经同步性还是INS)。社交互动的特征也驱动着互动性INS。这些特征包括知觉-运动特征,如共享的视听输入以及联合行动中的身体运动协调。示意性或社交信号行为,如眼神接触(Hirsch等人2017, Kinreich等人2017, Leong等人2017, Wass等人2020)或触摸(Nguyen等人2021),是同步性特别强大的驱动因素,可能用于重置社交伙伴的振荡节律(Leong等人2017)(图2)。有趣的是,虽然眼神接触与更大的INS相关,但它在对话过程中会降低瞳孔同步性(共享注意力处理的指标)(Wohltjen & Wheatley 2021),这表明根据观察到的同步类型存在独特且潜在的互补机制。

      在认知层面,已提出多个非互斥的解释来关联个体间的INS和认知处理(Wheatley等人2024)。一组解释植根于概念一致性(Stolk等人2014, 2016; Hasson & Frith 2016)。概念一致性可以反映共享知识、共享目标或共享情感状态。在互动过程中,个体通过反复探测和更新共享概念空间来达成相互理解或共同基础。这种共享概念空间反映在具有不同于感觉运动事件时间尺度的相似时间和空间大脑活动模式中(Stolk等人2013, 2014, 2016)。个体也可以通过在重复交流中建立共享情感空间(Anders等人2011)在情感上达成一致,在这种交流中,每个伙伴的情感状态都在对方的大脑中得到表征。当在互动过程中——例如,在交际游戏的多个区块中(Stolk等人2014)或使用动态INS(Li等人2021, Likens & Wiltshire 2021)——检查同步性时,概念一致性主张特别具有说服力。否则,一致性可能仅仅反映伙伴之间预先存在的神经相似性。在任何互动中,观点和处理方式上现有的神经相似性与伙伴之间相互调整的能力相结合,都会对INS水平产生贡献(图2)。

     上面讨论的相互预测框架提供了一个基于行为动作和预测的INS相关解释。在社交互动过程中,双方伙伴都会表征自己和社交伙伴的行为。INS信号反映了伙伴自身行为和对他人行为预测的总和活动(Hamilton 2021)。结合相互预测与主动推理框架(如Friston & Frith 2015, Lehmann等人2023),Mayo & Shamay-Tsoory(2024)提出社交伙伴努力最小化自己和伙伴的预测误差。通过这种主动推理过程,推理模型随时间变得更加相似,这种推理过程的相似性可能反映在INS中(Friston & Frith 2015)。

行为神经科学方法用于识别机制

      虽然人类研究已开始测试关于同步性作用的因果假设,但这项工作受到了可用于二元互动记录的方法在时间和空间分辨率方面的限制,以及用于测试假设的实验控制程度的限制。行为神经科学方法允许在啮齿类动物进行社交互动时达到细胞级别的分辨率。在行为上,大鼠和小鼠以与人类互动相似的方式进行人际行为同步。例如,在喂养和梳理过程中可以观察到父母-婴儿或父母-幼崽之间的社交同步性,以及当幼崽达到青春期时同伴之间的社交同步性(综述见Ham等人2023)。最近,在蝙蝠、猴子和小鼠的研究表明,INS在神经元水平上得到反映,提供了比单独行为更好的预测能力,并可预测未来的社交互动(Tseng等人2018, Kingsbury等人2019, Zhang & Yartsev 2019)。此外,最近的方法学进展允许使用光学成像方法从自由互动的小鼠中收集整个皮层表面的细胞分辨率神经反应(Scaglione等人2024)。虽然还是初步的,这种方法为人类和啮齿类动物同步性的更直接比较开辟了途径,在啮齿类动物研究中具有更大的能力来探测同步性的机制作用。

      在一系列小鼠研究中,Kingsbury等人(2019)为神经元水平的相互预测理论提供了令人信服的证据;具体来说,INS是反映双方伙伴中自身行为和对他人行为预测的神经活动的产物。使用钙成像同时记录来自多个个体的数百个背侧内侧前额叶皮层(dmPFC)神经元,他们发现当小鼠进行社交互动时,dmPFC神经元之间存在相关性。在高并发行为期间与低并发行为期间相比,相关强度没有差异,这表明共享行为本身并不驱动同步性。与人类研究一样,当小鼠处于社交互动中时,相比于它们之间有障碍物时,同步性更强,这表明同步性不仅仅是由共享环境造成的。重要的是,使用跨大脑广义线性模型方法,他们发现可以基于两只动物的行为来预测一只动物的神经活动,但在模型中包含另一只动物(即社交伙伴)的神经活动显著改善了预测表现。在单个神经元水平,他们发现dmPFC内的细胞在互动过程中编码小鼠的特定行为,而其他神经元则编码互动伙伴的行为。这些细胞在群体内在空间上混合,导致大脑之间在群体水平上的同步性。事实上,编码伙伴行为的细胞对跨大脑同步性有最大影响。当使用"行为"细胞(即编码互动特定行为的dmPFC集合内的细胞)而不是中性细胞时,他们在单细胞记录水平上发现了类似的预测改善。总的来说,这些发现展示了跨大脑同步性的神经元机制。也就是说,双方伙伴都表征自己和伙伴的行为。这种共同的行为库导致大脑之间的活动模式相似,INS的程度预测二元组之间的未来互动(Kingsbury等人2019)。

结论和展望

      正如我们在本文中所回顾的,新出现的证据指向跨大脑同步性对于实现、促进和完成社交互动和沟通的重要性。我们看到了同步性和共享体验如何在社交互动中自动产生,以及同步性如何影响主观体验和我们可能持有的观点。我们也看到我们如何通过在对话中达成共识(Sievers等人2024)以及使用其他形式的明确沟通来分享我们的思想和世界心理模型来努力同步我们的大脑(Frith & Frith 2024)。同步性也会增强和减弱,甚至会被打断。这些中断不一定是坏的,通过允许互补和/或独立的思维模式,它们也可能是有帮助的(Mayo & Gordon 2020, Wohltjen & Wheatley 2021)。我们不是总像钟摆一样同步摆动,当我们试图不受他人的观点和行为或社会习俗影响时,我们也可以抵制同步性或有意打破它,这在人际关系的许多情况下也是一个重要的能力。理解这些进入和退出同步性的瞬时转换如何根据特定的互动背景和目标而有益,将是未来研究的一个重要领域(如Mayo & Gordon 2020)。

      大脑是否同步可能依赖于大脑结构和功能的足够大且稳健的相似性。研究为神经同质性提供了引人注目的证据,即个体之间的熟悉度和友谊与他们在暴露于相同刺激时的大脑活动相似性之间存在紧密联系(Parkinson等人2018, Matz等人2022)。未来的研究将有助于进一步研究跨互动二元组的大脑结构和功能测量,以及认知和人格特征,如何有助于预测谁与谁同步,同步程度如何,以及这与社交互动成功的关系。这样的实证工作对于测试辩证失调理论(Bolis等人2017)和双重共情问题(Milton 2012)等假说是必要的,这些假说与沟通结果取决于伙伴在大脑组织、生活经历、相互理解和沟通方式等特征上的一致程度的观点相一致。这项工作可以帮助科学地证实神经多样性的概念,这一概念源自自闭症权利运动,与所有大脑在某种程度上都是独特的,以及个体间的差异可能解释残疾而不是归因于个体的缺陷的想法相关联。人们也认识到,神经发育差异的研究应该摒弃传统的分类差异,并尝试包含和模拟捕捉差异出现的发展动态(Astle等人2024)。

      未来工作的另一个重要领域是理解同步性何时是机制或是表象现象。在发展同步性作为社交归属、沟通和学习机制的理论模型(如Friston & Frith 2015, Hamilton 2021, Leong等人2021, Mayo & Shamay-Tsoory 2024)以及直接测试同步性在这些过程中因果作用的方法(人类和动物)(Kingsbury等人2019, Pan等人2021, Liu等人2023)方面正在取得进展。几个模型表明,同步性反映了对伙伴更大的预测处理(如Friston & Frith 2015, Kingsbury等人2019, Hamilton 2021, Mayo & Shamay-Tsoory 2024)。使用计算方法的研究已成功用于研究和数学描述个体社交知觉和认知底层的认知和神经过程,这些研究可以扩展到研究和机制性解释社交互动中同步性的出现(Pott & Schilbach 2022, Bolis等人2023)。一个重要的未来方向将是继续形式化和测试计算模型,评估自我和他人的预测模型如何在社交互动中实时更新,以及这种更新如何(或是否)反映伙伴之间行为和神经同步性的实时变化以及伙伴之间神经相似性的长期变化。相关地,同步性的纵向研究对于测试同伴之间或父母与子女之间的神经同步性是否能预测社交连接或发展结果至关重要。然而,目前追踪同步性效果的纵向研究非常有限(见Quiñones-Camacho等人2022)。

     最后,大多数INS研究都是面对面的,但随着沟通越来越多地发生在面对面情境之外,理解同步性在这些虚拟情境中可能如何不同将变得重要。虚拟互动失去了共同在场的关键方面,包括身体线索、眼神接触,甚至气味——这些特征对社交推理和社交联结至关重要(Endevelt-Shapira等人2021)。此外,上述回顾的研究表明,眼神接触、触摸和人际身体协调可能驱动同步性。事实上,初步研究表明,与面对面互动相比,在虚拟、短信互动期间神经同步性降低,尽管跨情境的信息传递相似(Schwartz等人2024)。

总结:

      总的来说,社交大脑具有自发和毫不费力地同步的神奇能力。这种能力对于人类变得有意识、分享经验和沟通的能力来说似乎是根本性的,而这反过来又调节了跨大脑之间的同步程度。能够分享和反思我们对世界的体验使我们能够共同发展世界的心理模型,我们可以用它来传递信息、教育彼此,并参与其他改变我们所生活世界的文化建设活动。然而,跨大脑(或大脑群体之间)的同步可能不会发生,甚至可能出错,导致误解和沟通失败,这可能带来严重的后果。在这里,人际层面的差异可能是相关的,应该在未来的研究中系统地解决,包括同步化如何根据社交伙伴之间的神经类型匹配或不匹配而不同。通过这样做,未来的同步性研究将阐明影响谁的大脑与谁很好地同步的因素、个体间共享的潜在机制,以及可能有助于使沟通重新同步的补偿策略和技术,即使最初没有发生自发的一致。鉴于许多误解和冲突继续成为人类存在的特征,这项工作的潜在相关性是巨大的,通过指出支持沟通和和解的机制和技术,可能有助于减轻人类的冲突。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值