如何通俗地理解曲率?

1 地球是圆的

历史上很长的时间,人们都觉得地球是平的:

不过如果在海边,还是容易发现地球其实不是平的。比如极目远眺,发现很远的建筑在海平面以下:

加上麦哲伦环球航行、月全食、太空旅行等各种事实的呈现,人们最终可以确定地球是圆的的了(下图是从月球上看地球)。

之所以这么难发现地球是圆的,主要是因为地球的半径太大了。

2 球的曲率

下面有三个球体,网球、篮球、地球,半径越小的越容易看出是圆的:

随着半径地变大(除了圆心之外,圆能够改变的也只有半径了),越来越不圆了:

因此,定义球体或者圆的“圆”的程度,术语叫作 曲率 ,为:

K=\frac{1}{r}

其中r 为球体或者圆的半径,这样半径越小的圆曲率越大,直线可以看作半径为无穷大的圆,其曲率为:

K=\lim_{r\to\infty}\frac{1}{r}=0

这样定义曲率符合我们的直觉。

3 曲线的曲率

很显然,曲线也有不同的弯曲程度:

3.1 密切圆

可以将圆的曲率扩展到曲线上。我们知道两点决定一条直线,比如下面就是曲线的割线:

当 x\to x_0 的时候,得到的就是切线:

同样的道理,三个点可以确定一个圆:

当 \delta\to 0 时,得到的圆称为 密切圆 (Osculating circle),是对x_0 附近的曲线的 最佳圆近似 :

3.2 密切圆的半径与曲率

可以观察到,在曲线较为平坦的地方,密切圆半径很大,较为弯曲的地方,密切圆半径就较小:

这个事实告诉我们,可以用密切圆的曲率来定义曲线的曲率(因为格式所限,详细推导请查看此处,还是挺有意思的,综合应用了线性代数的知识):

已知函数 f(x) 在 x_0 点有二阶导数 f''(x_0) ,且 f''(x_0)\ne 0 ,则此点有密切圆,其半径为:

r=\frac{\left(1+\left(f'(x_0)\right)^2\right)^\frac{3}{2}}{\left|f''(x_0)\right|}

此时,曲线的 曲率 也就是密切圆的曲率,为:

K=\frac{1}{r}=\frac{\left|f''(x_0)\right|}{\left(1+\left(f'(x_0)\right)^2\right)^\frac{3}{2}}

所以密切圆也称为曲线的 曲率圆 ,半径r 称为 曲率半径 。

4 曲率圆的圆心

光知道半径是没有办法画出密切圆(曲率圆)的,还必须知道它的圆心在哪里(因为格式所限,详细推导请查看此处):

已知函数 f(x) 在 x_0 点有二阶导数 f''(x_0) ,且 f''(x_0)\ne 0 ,则此点有密切圆(曲率圆),其圆心为 (\alpha,\beta) :

值为:

\begin{cases}    \alpha=x_0-\frac{f'(x_0)\left(1+(f'(x_0))^2\right)}{f''(x_0)}\\    \\    \beta=f(x_0)+\frac{1+\left(f'(x_0)\right)^2}{f''(x_0)}\end{cases}

此圆心也称作 曲率中心 。

如果 x_0 移动,会得到一系列曲线 f(x) 的密切圆的圆心:

圆心轨迹 g(x)  称为曲线 f(x) 的 渐屈线 ,其参数方程很显然为:

\begin{cases}    \alpha=x-\frac{f'(x)\left(1+(f''(x))^2\right)}{f''(x)}\\    \\    \beta=f(x)+\frac{1+\left(f'(x)\right)^2}{f''(x)}\end{cases}

曲线 f(x) 称为圆心轨迹 g(x) 的 渐伸线 。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值