基于高阶累积量的调制信号识别算法的研究——详细版

338 篇文章 712 订阅 ¥79.90 ¥99.00

        在进行调制方式识别之前,我们首先需要对信号的相关特征进行提取,信号特征的提取需要反映调制信号的细节信息,本文将选择信号的高阶累积量以及信号的希尔伯特变换结果作为特征提取值。在对调制信号进行识别之前,需要对调制信号做预处理,这是由于实际接收器接收到的调制信号往往受到诸如天空噪声、大气噪声以及人为噪声等各种噪声的干扰,而这些噪声会严重干扰信号的频谱特性。因此,对调制信号的预处理的主要目的在于为了扩大信号调制特征的差异性,尽量消除底噪声对真实信号的影响。

     

即信号的概率密度的特征函数是密度函数的傅里叶变换,该特征函数满足如下条件:

    上述两个公式还是微特征函数在原点存在最大值,且特征函数在坐标轴原点的k阶倒数等于信号的k阶矩。

    对特征函数取对数:

  • 1
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值