Fisher分类器

function fisher  

x1=[0.2331 1.5207 0.6499 0.7757 1.0524 1.1974  

    0.2908 0.2518 0.6682 0.5622 0.9023 0.1333  

    -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315  

    0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655  

    0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152  

    0.7226 -0.2015 0.4070 -0.1717 -1.0573 0.2099];  

x2=[2.3385 2.1946 1.6730 1.6365 1.7844 2.0155  

    2.0681 2.1213 2.4797 1.5118 1.9692 1.8340  

    1.8704 2.2948 1.7714 2.3939 1.5648 1.9329  

    2.2027 2.4568 1.7523 1.6991 2.4883 1.7259  

    2.0466 2.0226 2.3757 1.7987 2.0828 2.0798  

    1.9449 2.3801 2.2373 2.1614 1.9235 2.2604];  

x3=[0.5338 0.8514 1.0831 0.4164 1.1176 0.5536  

    0.6071 0.4439 0.4928 0.5901 1.0927 1.0756  

    1.0072 0.4272 0.4353 0.9869 0.4841 1.0992  

    1.0299 0.7127 1.1024 0.4576 0.8544 1.1275  

    0.7705 0.4129 1.0085 0.7676 0.8418 0.8784  

    0.9751 0.7840 0.4158 1.0315 0.7533 0.9548];  

%将x1,x2,x3变为列向量  

x1=x1(:);  

x2=x2(:);  

x3=x3(:);  

%计算第一类的样本均值向量  

m1(1)=mean(x1);  

m1(2)=mean(x2);  

m1(3)=mean(x3);  

%计算第一类样本类内散度矩阵S1  

S1=zeros(3,3);  

for i=1:36  

    S1=S1+[-M1(1)+X1(I)-m1(2)+x2(i)-m1(3)+x3(i)]'*[-m1(1)+x1(i)-m1(2)+x2(i)-m1(3)+x3(i)];  

end  

x4=[1.4010 1.2301 2.0814 1.1655 1.3740 1.1829  

    1.7632 1.9739 2.4152 2.5890 2.8472 1.9539  

    1.2500 1.2864 1.2614 2.0071 2.1831 1.7909  

    1.3322 1.1466 1.7087 1.5920 2.9353 1.4664  

    2.9313 1.8349 1.8340 2.5096 2.7198 2.3148  

    2.0353 2.6030 1.2327 2.1465 1.5673 2.9414];  

x5=[1.0298 0.9611 0.9154 1.4901 0.8200 0.9399  

    1.1405 1.0678 0.8050 1.2889 1.4601 1.4334  

    0.7091 1.2942 1.3744 0.9387 1.2266 1.1833  

    0.8798 0.5592 0.5150 0.9983 0.9120 0.7126  

    1.2833 1.1029 1.2680 0.7140 1.2446 1.3392  

    1.1808 0.5503 1.4708 1.1435 0.7679 1.1288];  

x6=[0.6210 1.3656 0.5498 0.6708 0.8932 1.4342  

    0.9508 0.7324 0.5784 1.4943 1.0915 0.7644  

    1.2159 1.3049 1.1408 0.9398 0.6197 0.6603  

    1.3928 1.4084 0.6909 0.8400 0.5381 1.3729  

    0.7731 0.7319 1.3439 0.8142 0.9586 0.7379  

    0.7548 0.7393 0.6739 0.8651 1.3699 1.1458];  

x4=x4(:);  

x5=x5(:);  

x6=x6(:);  

%计算第二类的样本均值向量m2  

m2(1)=mean(x4);  

m2(2)=mean(x5);  

m2(3)=mean(x6);  

%计算第二类样本类内散度矩阵S2  

S2=zeros(3,3);  

for i=1:36  

    S2=S2+[-m2(1)+x4(i)-m2(2)+x5(i)-m2(3)+x6(i)]'*[-m2(1)+x4(i)-m2(2)+x5(i)-m2(3)+x6(i)];  

end  

%总类内散度矩阵  

Sw=zeros(3,3);  

Sw=S1+S2;  

%样本类间散度矩阵Sb  

Sb=zeros(3,3);  

Sb=(m1-m2)'*(m1-m2);  

%最优解W  

W=S^-1*(m1-m2)'  

%将W变为单位向量以方便计算投影  

W=W/sqrt(sum(W.^2));  

%计算一维Y空间中的各类样本均值M1及M2  

for i=1:36  

    y(i)=W'*[x1(i) x2(i) x3(i)]';  

end  

M1=mean(y)  

for i=1:36  

    y(i)=W'*[x4(i) x5(i) x6(i)]';  

end  

M2=mean(y)  

%利用当P(w1)与P(w2)已知的公式计算wo  

p1=0.6;p2=0.4;  

W0=-(M1+M2)/2+(log(p2/p1))/(36+36-2);  

%计算将样本投影到最佳方向上以后的新坐标  

X1=[x1*W(1)+x2*W(2)+x3*W(3)]';  

X2=[x4*W(1)+x5*W(2)+x6*W(3)]';%计算投影得到的长度  

XX1=[W(1)*X1;W(2)*X1;W(3)*X1];  

XX2=[W(1)*X2;W(2)*X2;W(3)*X2];%得到新坐标  

%绘制样本点  

figure(1)  

plot3(x1,x2,x3,'r*') %第一类  

hold on  

plot3(x4,x5,x6,'bp') %第二类  

legend('第一类点','第二类点')  

title('Fisher线性判别函数')  

W1=5*W;  

%画出最佳方向  

line([-W1(1),W1(1)],[-W1(2),W1(2)],[-W1(3),W1(3)],'color','b');  

%判别已给点的分类  

a1=[1,1,5,0.6]';  

a2=[1.2,1.0,0.55]';  

a3  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值