基于协同滤波的个性化推荐算法matlab仿真

1616 篇文章 1676 订阅
本文详细介绍了基于协同滤波的个性化推荐算法,包括用户模型建立、最近邻近搜索、推荐产生等步骤,并提供了MATLAB仿真案例,探讨了协同过滤在推荐系统中的应用和相关数学原理。
摘要由CSDN通过智能技术生成

目录

一、理论基础

    1).用户模型的建立

    2).最近邻近搜索

   3).推荐产生

二、案例背景

三、部分MATLAB代码

四、仿真结论分析

五、参考文献


一、理论基础

基于协同过滤算法主要通过如下的三个步骤产生推荐:

    1).用户模型的建立

       在协同过滤算法中,用户兴趣的表示主要为用户i对项目j的评分上,一般通过设置一个m*n的用户评分表,其中有包含m个用户,n个项目。具体的评分有两种方式,一种是布尔型,即用1表示感兴趣,0表示不感兴趣,但是这种方法无法体现用户的感兴趣程度。另外一种是用不同的分数表示用户的兴趣程度,比如使用0~5六个分数,不同的分数表示不同程度的感兴趣度。其基本形式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值