目录
一、理论基础
SVPWM算法很适合在数字系统中使用,有很高的直流电压利用率,而且可以有效降低电机的转矩脉振和噪音,其基本结构如下:
三相静止ABC坐标系下的交流信号跟踪问题,在经过Clark变换和Park变换后,转换为两相旋转坐标系下的直流信号跟踪问题,于是,同志们又可以愉快的使用PID控制了。
瞬时空间磁链矢量圆轨迹法(SVPWM)就是在很短的一段时间间隔内,通过对电压型逆变器的开关状态的线性组合,得到磁链矢量轨迹为圆形的PWM方式。SVPWM控制算法的思想是:运用定子磁链空间矢量跟踪的思想,在正弦波永磁同步电机内部空间产生旋转的圆形磁场,从而产生稳定的电磁转矩。
三相逆变器对PMSM供电时,SVPWM技术产生的PWM波控制着三相逆变器的六个开关管的开通与关闭。逆变器结构如图1所示,逆变器由三个桥臂六个开关管组成,为避免短路,逆变器同一个桥臂上的两个电子开关交替导通。
1.1 系统概述
基于PARK-Clark变换和双闭环PI调节器的永磁同步电机PMSM空间矢量脉宽调制SVPWM控制系统是一种高效的电机控制策略,它通过对电机电流和电压的精准控制,实现了对电机转矩和速度的精确控制。
一、基本原理
- PARK-Clark变换:PARK-Clark变换是一种数学变换,它将三相电系统(如电机或发电机)的三个正交矢量转换为两个正交矢量和一个直流分量。在PMSM控制中,PARK-Clark变换用于将电机的三相电流(或电压)转换为旋转坐标系下的两个正交矢量和一个直流分量,使得电机的控制更加直观和方便。
- 双闭环PI调节器:双闭环PI调节器是一种控制系统,它由两个调节器组成:速度调节器和电流调节器。速度调节器根据设定的速度和实际的速度差值,计算出需要的转矩;电流调节器根据设定的电流和实际电流的差值,计算出需要的电压。双闭环PI调节器通过对电压和电流的精确控制,实现了对电机速度和转矩的精确控制。
- SVPWM:SVPWM是一种脉宽调制技术,它通过调节脉冲的宽度和相位,实现对电机电压和电流的精确控制。SVPWM通过对电机电压和电流的控制,实现了对电机转矩和速度的精确控制。
二、数学模型
PARK-Clark变换:对于电机的三相电流ia、ib、ic,PARK-Clark变换的数学公式为:
id = (2/3) * (ia + ib/sqrt(3) + ic/sqrt(3))
iq = (2/3) * (ia + tauib/sqrt(3) + tau^2ic/sqrt(3))
其中,id、iq为旋转坐标系下的直交电流分量,tau = exp(j2pi/3),j为虚数单位。
双闭环PI调节器:速度调节器和电流调节器的数学公式为:
速度调节器:Te = Kp_speed * (n_ref - n) + Ki_speed * int((n_ref - n) dt)
电流调节器:U = Kp_current * (I_ref - I) + Ki_current * int((I_ref - I) dt)
其中,Te为需要的电磁转矩,n_ref、n分别为设定的速度和实际的速度,Kp_speed、Ki_speed分别为速度调节器的比例和积分系数,I_ref、I分别为设定的电流和实际电流,Kp_current、Ki_current分别为电流调节器的比例和积分系数。
SVPWM:SVPWM的数学模型比较复杂,它涉及到电机的电压、电流、磁链等物理量的计算和控制。具体的SVPWM数学模型需要根据电机的具体参数和控制要求进行详细设计。
三、控制流程
基于PARK-Clark变换和双闭环PI调节器的PMSM SVPWM控制系统的控制流程如下:
- 通过传感器采集电机的三相电流ia、ib、ic和转速n;
- 通过PARK-Clark变换将三相电流转换为旋转坐标系下的直交电流分量id、iq;
- 速度调节器根据设定的速度和实际的速度差值,计算出需要的电磁转矩Te;
- 电流调节器根据设定的电流和实际电流的差值,计算出需要的电压U;
- SVPWM根据计算出的电压U,生成脉冲信号控制电机的运行。
1.2 PARK变换


1.3 CLARK变换


二、核心程序

function [sys,x0,str,ts] = func_N_calculation(t,x,u,flag)
%A=0;B=0;
%C=0;N=0;
global A B C N;
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=[];
case 2,
sys=[];
case 3,
sys=mdlOutputs(t,x,u,A,B,C,N);
case 4,
sys=[];
case 9,
sys=[];
otherwise
error(['Unhandled flag = ',num2str(flag)]);
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 3;
sizes.NumOutputs = 1;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed
sys = simsizes(sizes);
x0 = [0 0 0];
str = [];
ts = [0 0];
%u(1)=Uafa;u(2)=Ubta
function sys=mdlOutputs(t,x,u,A,B,C,N)
x(1)=u(2); %x(1)=Ua
x(2)=1/2*(sqrt(3)*u(1)-u(2)); %x(2)=Ub
x(3)=1/2*(-sqrt(3)*u(1)-u(2)); %x(3)=Uc
if (x(1)>0); %A
A=1;
else
A=0;
end
if (x(2)>0); %B
B=1;
else
B=0;
end
if (x(3)>0);
C=1; %C
else
C=0;
end
N=4*C+2*B+A; %N
sys=N;
function [sys,x0,str,ts] = func_T1T2_cal(t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=[];
case 2,
sys=[];
case 3,
sys=mdlOutputs(t,x,u);
case 4,
sys=[];
case 9,
sys=[];
otherwise
error(['Unhandled flag = ',num2str(flag)]);
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 2;
sizes.NumInputs = 5;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed
sys = simsizes(sizes);
x0 = [];
str = [];
ts = [0 0];
%u(1)=N;u(2)=Uafa;u(3)=Ubta;u(4)=Udc;u(5)=Ts
function sys=mdlOutputs(t,x,u)
global T1 T2 Ts
Ts=u(5);
switch u(1)
case 1
T1=-1*u(2)+3^0.5/3*u(3);
T2=1*u(2)+3^0.5/3*u(3);
case 2
T1=1*u(2)+3^0.5/3*u(3);
T2=0*u(2)-2*3^0.5/3*u(3);
case 3
T1=1*u(2)-3^0.5/3*u(3);
T2=2*3^0.5/3*u(3);
case 4
T1=-2*3^0.5/3*u(3);
T2=-1*u(2)+3^0.5/3*u(3);
case 5
T1=2*3^0.5/3*u(3);
T2=-1*u(2)-3^0.5/3*u(3);
case 6
T1=-1*u(2)-3^0.5/3*u(3);
T2=1*u(2)-3^0.5/3*u(3);
end
T1=T1*u(5)/u(4)/2*3;
T2=T2*u(5)/u(4)/2*3;
if (T1+T2<=Ts);
sys(1)=T1;
sys(2)=T2;
else
sys(1)=T1*Ts/(T1+T2);
sys(2)=T2*Ts/(T1+T2);
end
三、仿真测试结果


A22-04

105

被折叠的 条评论
为什么被折叠?



