欢迎订阅《FPGA学习入门100例教程》、《MATLAB学习入门100例教程》
目录
3.基于Qlearning强化学习的机器人行走控制MATLAB编程实现
1.软件版本
matlab2021a
2.基于Qlearning强化学习的机器人行走控制理论简介
Q学习是一种基于强化学习的算法,旨在让智能体(agent)能够通过与环境的交互来学习最优策略,以最大化累积奖励。Q学习是强化学习中的一个经典算法,适用于马尔可夫决策过程(MDP)环境下的问题。其核心思想是学习一个Q值函数,用于评估在给定状态下执行某个动作所能获得的累积奖励。
本文介绍了一种使用MATLAB编程实现基于Qlearning的强化学习控制机器人行走迷宫的方法。详细阐述了Qlearning算法的理论基础,包括Q值函数、Q值更新公式及强化学习的基本步骤。通过读取地图数据、执行动作、计算奖励值并更新Q值,最终展示机器人在多次迭代后如何有效减少动作次数成功找到目标。
订阅专栏 解锁全文
7914

被折叠的 条评论
为什么被折叠?



