基于DBN-ELM深度信念网络的数据分类matlab仿真

目录

一、深度信念网络(DBN)

1.1 无监督学习

1.2 有监督学习

二、基于DBN-ELM深度信念网络的数据分类

三、MATLAB核心程序

四、仿真结果


       深度信念网络(Deep Belief Networks,DBN)是一种用于处理大规模数据的深度学习模型,它可以学习到数据的分布式特征表示,并且可以进行无监督学习。而极端学习机(Extreme Learning Machine,ELM)则是一种快速学习算法,它可以训练单层神经网络,并且具有快速收敛和低误差的特点。将DBN和ELM结合起来,就可以得到基于DBN-ELM深度信念网络的数据分类方法。该方法的基本思路是:使用DBN学习到数据的特征表示,并将特征表示作为ELM的输入来进行分类。下面我们详细介绍该方法的原理和数学公式。

一、深度信念网络(DBN)

      深度信念网络是一种深度学习模型,它由多个受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)组成,每个RBM都是一个隐藏层,将数据从低层特征表示映射到高层特征表示。DBN的学习过程可以分为两个阶段:无监督学习和有监督学习。

       深度信念网络(Deep Belief Networks, DBNs)是一种深度学习模型,代表了一种重要的技术创新,具有几个关键特点和突出能力。

       首先,DBNs是由多层受限玻尔兹曼机(Restricted Boltzmann Machines, RBMs)堆叠而成的生成模型。这种多层结构使得DBNs能够捕获数据中的高层次抽象特征,对于复杂的数据结构具有强大的表征能力。

       其次,DBNs采用无监督预训练的方式逐层训练模型。与传统的深度学习模型不同,这种逐层学习策略使DBNs在训练时更为稳定和高效,尤其适合处理高维数据和未标记数据。

        此外,DBNs具有出色的生成学习能力。它不仅可以学习和理解数据的分布,还能够基于学习到的模型生成新的数据样本。这种生成能力在图像合成、文本生成等任务上有着广泛的应用前景。

       最后,DBNs的训练和优化涉及到一些先进的算法和技术,如对比散度(Contrastive Divergence, CD)算法等。这些算法的应用和改进,使DBNs在许多实际问题上表现卓越,但同时也带来了一些挑战,如参数调优的复杂性等。

       总的来说,深度信念网络通过其独特的结构和生成学习的能力,展示了深度学习的新方向和潜力。它的关键技术创新和突出能力使其在诸多领域成为一种有力的工具,为人工智能的发展和应用提供了新的机遇。

1.1 无监督学习

       在无监督学习阶段,我们使用RBM对数据进行学习,通过不断地迭代更新权重和偏置项来最小化重构误差。具体地,对于第k个RBM,设其输入数据为X(k),权重矩阵为W(k),偏置项为b(k),隐藏层神经元个数为h。在得到每个RBM的隐藏层表示后,我们将最后一个RBM的输出作为特征表示向量Xnew​,用于后续分类。

1.2 有监督学习

       在有监督学习阶段,我们使用ELM对特征表示向量Xnew​进行训练,得到分类结果。具体地,设训练样本数为N,样本标签为Y。在训练完成后,我们使用ELM的输出矩阵β对新的测试数据进行分类。

二、基于DBN-ELM深度信念网络的数据分类

       DBN 由多层神经元构成,这些神经元又分为显性神经元隐性神经元(以下简称显元和隐元)。显元用于接受输入,隐元用于提取特征。因此隐元也有个别名,叫特征检测器 (feature detectors)。最顶上的两层间的连接是无向的,组成联合内存 (associative memory)。较低的其他层之间有连接上下的有向连接。最底层代表了数据向量 (data vectors),每一个神经元代表数据向量的一维。 基于DBN-ELM深度信念网络的数据分类方法结合了DBN的特征学习和ELM的快速训练特点。其结构如下图所示:

三、MATLAB核心程序

function [net]=DBN_OSELM(In,TsIn,Tar,TsTar,Options)
activF=Options.activF;                            %  Activation function
net_Architecture=Options.net_Architecture;        %  Network Architecture
mini_batch=Options.mini_batch;                    %  minibatch size
start_time_train=cputime;
for i=1:length(net_Architecture) 
 
% load initial mini-batches                                           
if i==1
P = Trinputs{1}; 
else
P=Hn{1}';
end                                    
% generate input weights
input_weights=randn(net_Architecture(i),size(P,2));         
% calculating the temporal hidden layer 
tempH=input_weights*P';                 
% Activation function
 switch lower(activF)
    case {'sig','sigmoid'}
        %%%%%%%% Sigmoid 
        H = 1 ./ (1 + exp(-tempH));
    case {'radbas'}
        %%%%%%%% Radial basis function
        H = radbas(tempH);
    case {'hardlim'}
        %%%%%%%% hardlim  function
        H = hardlim(tempH);
   case {'hardlims'}
        %%%%%%%% hardlims  function
        H = hardlims(tempH);
   case {'sin'}
        %%%%%%%% sin  function
        H = sin(tempH);
   case {'relu'}
        %%%%%%%% sin  function
        H = max(tempH,0);
    
%%%%%% More activation functions can be added here                
 end 
% unsupervised learning 
Hn{1}=H;                % save the new features representations 
B=pinv(H') * P ;        % calculate B of the encoder
M= pinv(H * H');        % calculate the covariance matrix
E{1}=P-(H'*B);          % calculate reconstruction error
% supervised learning
if i==length(net_Architecture)
T=Trtargets{1};             % load targets
beta=pinv(H') * T ;         % determine initial beta
Esup{1}=T-(Hn{1}' * beta);  % calculate prediction error
end
% end  of initialization  phase
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% start sequential Learning
if numel(Trinputs)>1%                   
for t=2:numel(Trinputs)-1
% load new mini-batches 
     if i==1
Pnew = Trinputs{t}; 
    else
Pnew =Hn{t}';  
     end
% temporal hidden layer; We no longer need the old input weighting matrix, we will use pinv (B ') instead.

Hn{t}=pinv(B')*Pnew';
% no need to the use of activation function ; activation beta is already calculated after activation
%% unsupervised learning
E{t}=Pnew-(Hn{t}' * B);
K =(M * Hn{t}) *((eye(size(Pnew,1))+(Hn{t})' * M * Hn{t})^(-1));
M = (M -( K * (Hn{t})' * M));
B = B + M * Hn{t} * (E{t});
%% supervised learning
if i== length(net_Architecture)
Tnew=Trtargets{t};
Esup{t}=Tnew-(Hn{t}' * beta); 
beta = beta + M * Hn{t} * (Esup{t});
end
end
end
%save updated beta (unsupervised)
weights{i}=pinv(B');                        
end

end_time_train=cputime;
Tr_Time=end_time_train-start_time_train;
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%%%%%% training accuracy
     % encoding
   input=In;
   for i=1:length(net_Architecture)
   input=(weights{i}*input')';
   end
   mapping_TRAIN=input;
   ytr_hat= smooth(S(mapping_TRAIN*beta,min(Tar),max(Tar)));% Scaling + removing outliers
   trainingAccuracy=sqrt(mse(ytr_hat-Tar));
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%%%%%% testing accuracy
start_time_test=cputime;
     % encoding
   input=TsIn;
   for i=1:length(net_Architecture)
   input=(weights{i}*input')';
   end
   mapping_TEST=input;
   yts_hat= smooth(S(mapping_TEST*beta,min(TsTar),max(TsTar)));  % Scaling + removing outliers
Ts_Time=cputime-start_time_test;
testingAccuracy=sqrt(mse(yts_hat-TsTar));
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% Save results
  net.Tr_Time=Tr_Time;
  net.Ts_Time=Ts_Time;
  net.Tr_acc=trainingAccuracy;
  net.Ts_acc=testingAccuracy;
  net.ytr_hat=ytr_hat;
  net.yts_hat=yts_hat; 
end
up2255

四、仿真结果

       为了验证基于DBN-ELM深度信念网络的数据分类方法的有效性,我们进行了一系列实验。
首先,我们对DBN的训练数据进行预处理,包括数据清理、标准化和归一化等处理,以保证数据的质量和一致性。然后,我们使用DBN对数据进行了特征提取和表示,并将得到的特征表示作为ELM的输入进行分类。实验结果表明,基于DBN-ELM深度信念网络的数据分类方法相比传统机器学习方法具有更强的泛化能力和更高的分类准确率。
  

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值