目录
图像滤波是图像处理中常用的技术,主要用于减少图像中的噪声或提取图像的某些特征。滤波过程可以被看作是对图像中每个像素的某种形式的邻域操作。下面,我将对图像滤波方法进行理论分析,并尽量提供详细的数学公式。
对于一个图像处理系统来说,可将流程分为三个阶段,在获取原始图像后,首先是图像预处理阶段、第二是特征抽取阶段、第三是识别分析阶段.其中图像预处理阶段尤为重要,如果此阶段处理不当,后面的工作将无法展开.实际应用中,我们的系统获取的原始图像并非完美:例如系统获取的原始图像,由于噪声、光照等原因,使得图像的质量不高,需进行预处理,以达到利于我们提取感兴趣的信息的目的.图像的预处理包括图像增强、平滑滤波、锐化等内容。图像的预处理既可以在空间域实现,也可以在频域内实现,其中空间域内实现是对图像进行点运算,它是一种既简单又重要的图像处理技术,它能让用户改变图像上像素点的灰度值,这样通过点运算处理将产生一幅新图像.
1. 空域滤波
使用空域模板进行的图像处理被称为空域滤波,模板本身被称为空域滤波器。根据操作特点可以分为线性滤波和非线性滤波两类;而根据滤波效果又可分为平滑滤波和锐化滤波两种。平滑的目的在于消除混杂在图像中的干扰因素,改善图像质量,强化图像表现特征。锐化的目的在于增强图像边缘,以及对图像进行识别和处理。空域滤波的原理如图1所示,就是在待处理的图像中逐点移动模板,对每个点,滤波器在该点的相应通过事先定义带的关系式来计算。
2.邻域平均法
邻域平均法(均值滤波)是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波。邻域平均法的主要步骤为:
(1) 将模板在图中漫游,并将模板中心与图中某个象素位置重合;
(2) 将模板上系数与模板下对应象素相乘;
(3) 将所有乘积相加;
(4) 将和(模板的输出响应)赋给途中对应模板中心位置的象素。
3. 中值滤波器
中值滤波是一种最常用的去除噪声的非线性平滑滤波处理方法,其滤波原理与均值滤波方法类似,二者的不同之处在于:中值滤波器的输出像素是由邻域像素的中值而不是平均值决定的。中值滤波器产生的模数较少,更适合于消除图像的孤立噪声点。中值滤波的算法原理是,首先是确定一个基数像素的滑动窗口W,窗口内各像素按从大小到大排队后,用其中间位置的灰度值代替原 灰度值成为窗口中心的灰度值 。
(1) 将模板在图中漫游,并将模板中心与图中某个象素位置重合;
(2) 读取模板下各对应像素的灰度值;
(3) 将模板对应的像素灰度值进行从小到大排序;
(4) 选取灰度序列里排在中间的1个像素的灰度值;
(5) 将这个中间值赋值给对应模板中心位置的像素作为像素的灰度值。
4. 锐化滤波器
图像的锐化与平滑相反,在图像的传输和变换过程中,因受到干扰会退化,比较典型的是图像模糊。图像锐化就是使边缘和轮廓线模糊的图像变得清晰,使其细节更加清楚。梯度对应的是一阶导数,梯度算子是图像处理中常用的一阶微分算法,而它实际上是一种非线性锐化滤波器。函数在某点的梯度是一个向量,它的方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值。
在对数字图像进行的实际运算子,由于无法采用微分运算,因此一般使用差分运算形式,常用的梯度算子有水平垂直差分法。
5.频域滤波
频域滤波主要是数字滤波器设计。由于噪声一般分布在频谱的高频部分,而图像的主要能量主要分布在频谱的低频区域,可用数字低通滤波器来实现图像的去噪,而图像的细节能量主要分布在高频区域,因此可用数字高通滤波器来实现图像的增强。图像的平滑既可以在空间域中进行,又可以在频率域中进行。图像从空间域变换到频率域后,其低频分量对应图像中灰度值变化比较缓慢的区域,而高频分量则表征了图像中物体的边缘和尖锐变化的随机噪声。低通滤波器能使图像的低频分量通过,是高频分量受到衰减,达到率除噪声,平滑图像的目的,因此也称平滑滤波器,下面介绍常见的四种频域平滑滤波器。
从频谱的角度看,图像的边缘和轮廓具有灰度突变的特征,对应着高频分量,因此图像锐化滤波器可以使用高通滤波器,使高频分量顺利通过,低频分量受到削弱。频域内,常用的高通滤波器有四种,即理想高通滤波器、巴特沃斯高通滤波器、指数高通滤波器和梯形高通滤波器。