ECG信号的经验模态分解(EMD)MATLAB仿真

目录

1.EMD分解步骤

2.EMD在ECG信号分析中的应用

3.MATLAB核心程序

4.仿真结果


      经验模态分解(Empirical Mode Decomposition, EMD)是一种自适应的数据分析方法,特别适合于非线性、非平稳信号的处理,如心电图(ECG)信号。ECG信号包含了心脏电活动的各种信息,如心跳节奏、传导异常等,EMD通过对ECG信号进行多层次分解,提取出不同尺度的内在模式,有助于临床诊断和研究。EMD的核心思想是通过一系列的“筛选”过程,将原始信号分解为一系列固有模态函数(Intrinsic Mode Functions, IMF)和一个残余分量(Residual)。每个IMF是一个局部均值为零的包络且具有不同频率特征的函数,能够反映信号在不同时间尺度上的动态特征。

1.EMD分解步骤

       经验模式分解(EMD)域内心电(ECG)信号的去噪,通常为基于QRS特征波经验性识别固有模态函数(IMF)分量并重建ECG信号。由于该方法引入个人误差,因此识别不准确。针对此问题,本文提出利用EMD与IMF分量统计特性对ECG信号进行去噪。首先对含噪ECG信号进行EMD分解得到一系列IMF分量,然后利用IMF分量的统计特性识别IMF分量属性,并采用被识别为ECG信号的IMF分量重建ECG信号。该识别方法基于统计学方法,具有统计学和现实物理意义。

1.初始化:设原始信号为X(t)。

2.提取IMF

  • 对X(t)进行上包络(upper envelope)和下包络(lower envelope)的估计,通常通过局部极大值和极小值点插值得到。

  • 计算包络的平均值(mean of envelopes),即包络包络。

  • 从原始信号X(t)中减去包络平均值,得到一个新的信号h(t)=X(t)−Mean of Envelopes。

  • 检查h(t)是否满足IMF的定义(局部均值为零,极值数目与过零点数目最多相差不超过一个)。如果满足,则h(t)即为第一个IMF;否则,将h(t)作为新的信号,重复步骤2。

  • 第一个IMF记为C1​(t),原始信号减去C1​得到剩余信号R1​(t)=X(t)−C1​(t)。

3.递归分解:对剩余信号R1​(t)重复步骤2,得到第二阶IMFC2​(t),以此类推,直至剩余信号成为单调函数或极小的包络差值,这时的剩余即为残余分量RN​。

       虽然EMD本质上是一个迭代和直观的过程,难以用简洁的闭合形式数学公式完全描述,但可以概述关键步骤的数学框架:

2.EMD在ECG信号分析中的应用

  • 噪声去除:通过分解ECG信号,低频的IMF往往对应基线噪声,去除这些成分可以提高信号质量。
  • 特征提取:不同IMF代表不同频率的生理活动,对心律不齐、早搏等异常进行识别。
  • 趋势分析:长期趋势(如残余分量)反映心率变化,对心脏健康评估有价值。
  • 非线性动力学分析:IMFs的时频特性可用于研究心脏动力学行为,如心肌梗死的非线性预测。

3.MATLAB核心程序

clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
load ('ecg.mat');% 加载数据文件'ecg.mat'
% 设置CEEMDAN算法的参数
Nstd    = 0.2;% 噪声强度因子
NR      = 500;% 噪声实现数量
MaxIter = 5000;% 最大迭代次数

% 调用ceemdan函数进行信号分解
[modes its]=ceemdan(ecg,0.2,500,5000);
t=1:length(ecg);% 定义时间轴
% 获取分解后模态的行数
[a b]=size(modes);
% 绘制ECG信号及其各层模态分解结果
figure;
subplot(a+1,1,1);% 绘制原始ECG信号
plot(t,ecg);%% ECG信号位于子图的第一行
ylabel('ECG')
set(gca,'xtick',[])
axis tight;
% 循环绘制每一个固有模态分量(IMF)
for i=2:a
    subplot(a+1,1,i);
    plot(t,modes(i-1,:));
    ylabel (['IMF ' num2str(i-1)]);% IMF标签
    set(gca,'xtick',[])% 隐藏x轴刻度
    xlim([1 length(ecg)])% 设置x轴范围与ECG信号一致
end;
% 绘制最后一个IMF(残留分量)
subplot(a+1,1,a+1)
plot(t,modes(a,:))
ylabel(['IMF ' num2str(a)])
xlim([1 length(ecg)])
% 另外创建图形展示各IMF分解所需的迭代次数分布
figure;
boxplot(its);% 使用箱线图展示迭代次数
up4087

4.仿真结果

       数据端点均值误差导致 IMF2-IMF8 分量的均值在 0 均值周围微小波动,IMF9 分量数据端点均值误差导致 IMF2-IMF8 分量的均值在 0 均值周围微小波动,IMF9 分量.ECG信号的EMD分解提供了一种强有力的工具,不仅能够解析复杂的心脏电活动,还能揭示隐藏在信号内部的生理病理信息,对临床诊断和科研有着重要意义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值