目录
基于自适应DCM(直接电流控制方法)的独立励磁电枢直流电动机模型参数辨识,是电机控制领域的一个重要研究方向,旨在通过实时调整控制策略,精确识别电机的动态特性,进而优化电机的性能。这种方法尤其适用于具有独立励磁绕组的直流电机,这类电机通过单独控制励磁电流和电枢电流,可以灵活调节转矩和速度,广泛应用于电动车、工业自动化等领域。
1.原理概述
独立励磁直流电动机的动态模型通常包括电枢回路和励磁回路两部分,涉及电流、电压、转速、转矩等多个物理量。模型参数辨识的目标是准确估计出电机的电阻、电感、反电动势常数等关键参数,以便于建立精确的数学模型,为控制器设计提供依据。自适应DCM方法利用电机的输入输出关系,通过在线调整参数估计值,逐步逼近真实参数。
1.1 电枢回路方程
电枢回路的基本方程可以表示为:

其中,Va 是电枢电压,Ra 是电枢电阻,La 是电枢电感,ia 是电枢电流,ωm 是电机角速度,Ke 是反电动势常数。
1.2 励磁回路方程
励磁回路方程可表述为:

其中,Vf 是励磁电压,Rf 是励磁电阻,Lf 是励磁电感,if 是励磁电流。
1.3 自适应参数辨识
自适应参数辨识算法的核心在于在线调整参数估计值,使之逐渐逼近真实值。常用的方法包括梯度下降、最小二乘法等。这里以最简单的梯度下降为例,介绍如何在线辨识电枢电阻Ra。设初值为Ra,0,在每个采样时刻根据误差信号调整参数估计值:

其中,μ是学习率,E是误差函数,∂Ra/∂E是关于Ra的误差函数偏导数。
1.4 具体实施步骤
模型建立:首先,根据电机的物理特性建立包含待辨识参数的数学模型。
实验设计:设计一系列的实验工况,如阶跃响应测试、正弦波信号注入等,以产生丰富的动态信息。
数据采集:在不同工况下,利用高精度传感器采集电枢电压、电流、励磁电流、转速等信号。
参数初估:基于电机铭牌数据或前次辨识结果,进行参数的初步估计。
迭代更新:采用最小二乘法或其他优化算法,结合自适应律,迭代更新参数估计值,直至收敛。
验证与优化:通过比较模型预测与实际数据,评估辨识效果,必要时调整辨识算法参数或实验方案。
2.MATLAB程序
clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
ts=1:0.1:2000; %Time for solution
tu=ts;
ut=20*sin(2*3.142*8*tu); %Input signal
Am=blkdiag(-1, -3, -2); %Am matrix calculation
setlmis([]); %Solution of LMI for P
P=lmivar(1, [3, 1]);
lmiterm([1 1 1 P], Am', 1, 's');
lmiterm([-2 1 1 P], 1, 1);
lmisys=getlmis;
[T, X]=feasp(lmisys);
P=dec2mat(lmisys, X, P);
%System Parameters
R=2; %Ohms
L=0.5; %Henrys
Kt=0.1;
Kb=0.1;
b=0.2; %Nms
J=0.02; %kg.m^2/s^2
A=[-R/L 0 -Kb/L; 0 0 1; Kt/J 0 -b/J]
B=[1/L; 0; 0]
%Solution of differential equations
yo(1:11)=zeros(1, 11);
[tss, y] = ode45(@(t, y) AC_MI(t, y, A, B, ut, tu, Am, P), ts, yo);
%Final value of found parameters
N=size(tss);
n=max(N);
a1=y(n, 7)
a2=y(n, 8)
a3=y(n, 9)
a4=y(n, 10)
b1=y(n, 11)
%Plots of parameters and errors vs time
figure
plot(tss, y(:, 4)-y(:, 1));
title('Error for state x1')
xlabel('Time (sec)')
ylabel('e1')
figure
plot(tss, y(:, 5)-y(:, 2));
title('Error for state x2')
xlabel('Time (sec)')
ylabel('e2')
grid
figure
plot(tss, y(:, 6)-y(:, 3));
title('Error for state x3')
xlabel('Time (sec)')
ylabel('e3')
grid
figure
plot(tss, y(:, 7));
title('Parameter a1')
xlabel('Time (sec)')
grid
figure
plot(tss, y(:, 8));
title('Parameter a2')
xlabel('Time (sec)')
grid
figure
plot(tss, y(:, 9));
title('Parameter a3')
xlabel('Time (sec)')
grid
figure
plot(tss, y(:, 10));
title('Parameter a4')
xlabel('Time (sec)')
grid
figure
plot(tss, y(:, 11));
title('Parameter b')
xlabel('Time (sec)')
grid
up4054
3.仿真结果




基于自适应DCM的独立励磁电枢直流电动机模型参数辨识,通过最小二乘法等优化手段,结合自适应律在线更新参数估计,实现了对电机模型参数的精确辨识。这一过程不仅增强了控制系统对电机动态特性的适应能力,还提高了整体控制系统的稳定性和效率。需要注意的是,实际应用中还需考虑噪声影响、参数间的相互作用及非线性因素,以确保辨识结果的准确性和鲁棒性。

2156

被折叠的 条评论
为什么被折叠?



