▲基于OFDM系统的OMP信道估计算法matlab仿真,对比LS信道估计

目录

1.OFDM 系统基础

2.LS 信道估计原理

3.OMP 信道估计原理

4.MATLAB程序

5.仿真结果

6.完整程序下载


       在现代无线通信领域,正交频分复用(OFDM)技术凭借其良好的抗多径衰落能力和高频谱效率而被广泛应用。例如,在 4G 和 5G 移动通信标准中,OFDM 都是核心的物理层传输技术。在 OFDM 系统中,信道估计起着至关重要的作用,它能够为信号的正确解调与解码提供必要的信道状态信息。最小二乘(LS)信道估计是一种较为简单直接的方法,而基于正交匹配追踪(OMP)的信道估计则是一种利用信道稀疏性的先进算法。

1.OFDM 系统基础

      OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM(Multi Carrier Modulation),多载波调制的一种。通过频分复用实现高速串行数据的并行传输, 它具有较好的抗多径衰落的能力,能够支持多用户接入。OFDM技术由MCM(Multi-Carrier Modulation,多载波调制)发展而来。OFDM技术是多载波传输方案的实现方式之一,它的调制和解调是分别基于IFFT和FFT来实现的,是实现复杂度最低、应用最广的一种多载波传输方案。

      OFDM主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ISI) 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上可以看成平坦性衰落,从而可以消除码间串扰,而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。

       OFDM是一种特殊的多载波传输方案。OFDM应用DFT和其逆变换IDFT方法解决了产生多个互相正交的子载波和从子载波中恢复原信号的问题。这就解决了多载波传输系统发送和传送的难题。应用快速傅里叶变换更使多载波传输系统的复杂度大大降低。从此OFDM技术开始走向实用。但是应用OFDM系统仍然需要大量繁杂的数字信号处理过程,而当时还缺乏数字处理功能强大的元器件,因此OFDM技术迟迟没有得到迅速发展。

基于IFFT/FFT 实现的OFDM 系统:

2.LS 信道估计原理

3.OMP 信道估计原理

4.MATLAB程序

.29..........................................................................
            %插值    
            H_est_omp = Hest1(:,js)+(Hest1(:,js+length(SNRs))-Hest1(:,js))*(ii-1)/(Nsymb-1);
            H_esti    = fft(H_est_omp);
            %均衡
            Xeq1      = Y_fft./H_esti;%%估计的导频加信号的值 
            %线性插值
            H_est_ls  = Hest2(:,js)+(Hest2(:,js+length(SNRs))-Hest2(:,js))*(ii-1)/(Nsymb-1);
            H_esti_ls = fft(H_est_ls);
            %均衡
            Xeq2      = Y_fft./H_esti_ls;
            end
        %QPSK解调
        Xeq1_dqpsk=pskdemod(Xeq1,4);
        Xeq2_dqpsk=pskdemod(Xeq2,4);
        [~,err1(ii,js)]=symerr(Xsignal,Xeq1_dqpsk);
        [~,err2(ii,js)]=symerr(Xsignal,Xeq2_dqpsk);
        end
    end
    for jj=1:length(SNRs)
        err1_avg(j1,jj)= mean(err1(:,jj));
        err2_avg(j1,jj)= mean(err2(:,jj));
    end
end


figure
semilogy(SNRs,mean(err1_avg,1),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
semilogy(SNRs,mean(err2_avg,1),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
xlabel('SNR(dB)');
ylabel('SER');
grid on;
legend('OMP','LS');

figure
semilogy(SNRs,mean(mse1,1),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
semilogy(SNRs,mean(mse2,1),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
legend('OMP','LS');
xlabel('SNR(dB)');
ylabel('MSE');
grid on;

5.仿真结果

      在高信噪比下,LS 信道估计能够提供较为准确的估计结果,因为噪声的影响相对较小。然而,在低信噪比环境中,由于其对噪声较为敏感,估计误差会显著增大。

       OMP 信道估计利用了信道的稀疏性,在一定程度上能够抑制噪声的影响。即使在低信噪比下,只要信道满足稀疏性假设,其仍能保持相对较好的估计精度。从数学角度来看,OMP 算法通过迭代选择与残差最相关的原子,逐步逼近真实的信道稀疏表示,从而降低了噪声对估计结果的干扰。

6.完整程序下载

完整可运行代码,博主已上传至CSDN,使用版本为matlab2017B:

https://download.csdn.net/download/ccsss22/90131519

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值