来源:学术头条
作者:与可
只需使用一种通用算法,就可以解决来自各个应用领域的各种任务,一直是人工智能(AI)行业的基本挑战之一。
如今,Google DeepMind 在这一方向取得了新的突破。
他们开发的第三代 Dreamer 通用算法,只需一次配置,就能在 150 多种不同任务中胜过专用方法。
据介绍,Dreamer 是第一个在没有人类数据或课程的情况下,从零开始在《我的世界》中收集钻石的算法,可以在不进行大量实验的情况下,解决具有挑战性的控制问题,使强化学习具有更广泛的适用性。
相关研究论文以 Mastering diverse control tasks through world models 为题,于今日发布在权威科学期刊 Nature 上。
Dreamer 是怎样炼成的?
目前的强化学习算法可以很容易地应用于与之相似的任务,但将其应用于新的应用领域则需要大量的人类专业知识和实验。更专业的算法通常用于实现更高的性能,针对不同应用领域提出的独特挑战,如连续控制、离散动作解析奖励、图像输入、空间环境和棋盘游戏。
将强化学习算法应用于全新的任务,例如从视频游戏转向机器人任务需要大量的精力、专业知识和计算资源来调整算法的超参数。这种脆性成为将强化学习应用于新问题的瓶颈,同时也限制了强化学习在计算昂贵的模型或任务中的适用性。
创建一种无需重新配置就能掌握新领域的通用算法,一直是人工智能领域的核心挑战,它将为强化学习带来广泛的实际应用。
Google DeepMind 提出的第三代 Dreamer 算法实现了这一突破。
据介绍,Dreamer 由 3 个神经网络组成:世界模型预测潜在行动的结果,评论者判断每个结果的价值,行动者选择行动以达到最有价值的结果。
图|Dreamer 的训练过程
当行动者与环境互动时,这 3 个部分会根据重放的经验同时进行训练。要在不同领域取得成功,3 个部分都需要适应不同的信号幅度,并在其目标中鲁棒地平衡各项条件。
世界模型通过自动编码学习感官输入的紧凑表征,并通过预测潜在行动的未来表征和奖励来实现规划。行动者和评论者神经网络纯粹从世界模型预测的抽象轨迹表征中学习行为。行动者在探索过程中通过熵正则学习选择收益最大化的行动。
Dreamer 使用 symlog 函数对编码器输入和解码器目标进行向量观测转换,并对奖励预测器和批评器采用 synexp 双热损失。这些技术可以在许多不同领域实现鲁棒且快速的学习。
效果怎么样?
在固定超参数下,研究团队从基准、《我的世界》、消融、扩展性 4 个角度评估了Dreamer 在 8 个领域、超过 150 项任务的通用性。
他们首先进行了广泛的实证研究来评估基准,包括连续和离散动作、视觉和低维输入、密集和稀疏奖励、不同奖励尺度、二维和三维世界以及程序生成。
结果发现,在适用的领域中,Dreamer 可以和最好的专用算法相媲美,甚至表现更好,无论它们是否基于模型。
图|基准分数
《我的世界》是在一个独特的随机生成的无限三维世界中进行的。在此期间,玩家需要通过寻找资源和制作工具,从稀少的奖励中发现一连串的 12 种物品。有经验的人类玩家大约需要 20 分钟才能获得钻石。
Dreamer 是第一个从零开始在《我的世界》中收集钻石的算法,不像 VPT (视频预训练)或自适应课程要求使用人工数据,这实现了 AI 领域的一个重要突破。所有 Dreamer 智能体都在 1 亿个环境步数内发现钻石。
图|Dreamer在《我的世界》钻石挑战中的表现
在消融方面,他们在 14 个任务的不同集合上消融了鲁棒性技术和学习信号,发现所有鲁棒性技术都有助于提高性能,其中最显著的是世界模型目标的库尔巴克-莱伯勒平衡和自由比特,其次是返回归一化和用于奖励和价值预测的 symexp 双热回归。
为了研究世界模型的影响,他们消除了 Dreamer 的学习信号,方法是阻止特定任务的奖励和价值预测梯度或与任务无关的重构梯度塑造其表征。
以往的强化学习算法通常只依赖于特定任务的学习信号,而 Dreamer 则主要依赖于其世界模型的无监督目标。这为未来利用无监督数据进行预训练的算法变体提供了可能。
图|Dreamer 的消融
在扩展性方面,他们在 Crafter 和 DMLab 任务上训练了参数从 1200 万到 4 亿不等的 6 个模型,并采用了不同的重放比例,这会影响智能体执行梯度更新的次数。增加模型大小可直接转化为更高的任务性能和更低的数据要求,梯度步数的增加进一步减少了学习成功行为所需的交互。
结果显示,Dreamer 能在不同的模型大小和重放比例下稳健地学习,这为通过扩展计算资源来提高性能提供了一种可预测的方法。
图|Dreamer 的鲁棒扩展
作为一种基于学习世界模型的高性能算法,Dreamer 为未来的研究方向铺平了道路,包括从互联网视频中向智能体传授世界知识,以及跨领域学习单一世界模型,让智能体积累越来越多的通用知识和能力。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https://wx.zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到2月28日 ”未来知识库”精选的100部前沿科技趋势报告
《核聚变,确保 21 世纪美国的主导地位的关键技术》
《世界知识产权组织:2025WIPO 技术趋势报告:交通运输的未来(145 页)》
《世界知识产权组织(WIPO):2024 年世界知识产权指标报告(194 页)》
《联合国环境规划署:2024 年保护地球报告(81 页)》
《联合国工发组织:2024 清洁技术创新能力建设框架研究报告(51 页)》
《凯捷:Applying TechnoVision 2025:未来科技趋势及应用愿景(17 页)》
《谷歌:2025 年 AI Agent 白皮书:AI 智能体时代来临(42 页)》
《富而德律师事务所:2024 年国际仲裁趋势年度回顾报告(41 页)》
《邓白氏:2024 年全球企业破产报告(27 页)》
《LLM 时代小模型的应用潜力与挑战 》(50 页)
《斯坦福 2025 斯坦福新兴技术评论十项关键技术及其政策影响分析报告》(英文版 191 页)
《英伟达:2025NVIDIA 自动驾驶安全报告(26 页)》
《微软 MICROSOFT (MSFT) 2024 年影响力摘要报告(23 页)》
《高德地图:2024 年中国主要城市交通分析报告(29 页)》
《德勤 & CAS:2025 锂离子电池回收行业报告 - 面向绿色未来的市场及创新趋势(36 页)》
《ABI Research:2025 生成式人工智能在语义和实时通信中的应用研究报告(20 页)》
《2025 年 3D 打印技术发展趋势、产业链及相关标的分析报告(45 页)》
《生成式基础模型的可信度 —— 指南、评估与展望》(231 页)
《量子信息科学与技术对国家安全的影响》(118 页)
《中国科学技术信息研究所:2024 科技期刊世界影响力指数(WJCI)报告(68 页)》
《思略特(Strategy&):2025 汽车行业的人工智能(AI)机遇研究报告(12 页)》
《赛默飞:2024 年中国生物科技行业调研报告:资本寒冬中生物科技企业的生产之道(18 页)》
《清华大学:2025 年 DeepSeek 与 AI 幻觉报告(38 页)》
《美国企业研究所(AEI):2025 创新未来电力系统研究报告:从愿景迈向行动(71 页)》
《超材料的智能设计研究进展》
《Ember:2030 年全球可再生能源装机容量目标研究报告(29 页)》
《量子信息科学与技术对国家安全的影响》
《英国人工智能安全研究所:2025 年国际人工智能安全报告 - 执行摘要(22 页)》
《世界海事大学:2024 海事数字化与脱碳研究报告:可持续未来(250 页)》
《艾睿铂(AlixPartners):2024 回溯过往锚定未来:大型科技公司如何推进人工智能愿景研究报告(18 页)》
《Wavestone :2025 数据与 AI 雷达:掌握数据与人工智能转型的 10 大挑战研究报告(30 页)》
《CSIS:2024 中美学术的再联结研究报告:在激烈竞争的时代增进相互理解(120 页)》
《MSC:2025 全球国防创新就绪度差距系列报告:突破制约国防创新的六大隐性障碍(第四版)(32 页)》
《2025 年 AI 编程发展前景及国内外 AI 编程应用发展现状分析报告(22 页)》
《中国核电 - 公司深度报告:世界核电看中国 - 250218(22 页)》
《医药生物行业:医疗器械行业全景图发展趋势及投资机会展望 - 250216(28 页)》
《皮尤研究中心:2024 美国社交媒体使用情况研究报告(英文版)(30 页)》
《科睿唯安:2025 基因编辑领域的领先创新者洞察报告 - 改变药物发现和开发范式的八大创新者(47 页)》
《经合组织(OECD):2025 年全球脆弱性报告(218 页)》
《计算机行业年度策略:AI 应用元年看好 Agent、豆包链及推理算力三大主线 - 250218(38 页)》
《国金证券研究所:从理想走向现实,全球人型机器人研究报告》
《深度解读 DeepSeek 原理与效应(附 PPT 下载)》
《兰德公司(RAND):2025 借鉴危机经验构建城市水安全韧性研究报告:五城案例分析(62 页)》
《凯捷(Capgemini):2025 行业创新洞察:电气化飞机推进系统研究报告(27 页)》
《国际能源署(IEA):2025 全球电力市场报告:至 2027 年的分析与预测(200 页)》
《Zenith:2025 年国际消费电子展(CES)趋势报告:AI 对消费科技、消费行为及传媒营销的变革性影响(17 页)》
《RBC 财富管理:全球透视 2025 年展望报告(33 页)》
《美国国防部和国家安全领域的十大新兴技术》(96 页)
《代理型人工智能全面指南》(45 页 ppt)
《麦肯锡 2025 人类工作中的超级代理。赋能人类解锁 AI 的全部潜力》(英文版 47 页)
《仲量联行(JLL):2025 美国制造业的复兴全面分析报告:未来制造业增长及工业需求前瞻(26 页)》
《未来的太空领域:影响美国战略优势的领域》
《Luminate:2024 年年终美国影视行业报告:数据及趋势洞察(40 页)》
《Anthropic:2025 年 AI 经济影响报告:AI 如何融入现代经济的各类实际任务(38 页)》
【ICLR2025】《LLMS 能否识别您的偏好?评估 LLMS 中的个性化偏好遵循能力》
《改进单智能体和多智能体深度强化学习方法》(219 页)
《美国安全与新兴技术中心:2025 中国学界对大语言模型的批判性思考通用人工智能 AGI 的多元路径探索研究报告》(英文版 29 页)
《世界经济论坛 & 麦肯锡:2025 以人才为核心:制造业持续变革的当务之急研究报告(40 页)》
《超越 ChatGPT 的 AI 智能体》(82 页 ppt)
《Harris Poll:2024 年汽车技术预测报告:消费者对先进汽车技术与功能的洞察(14 页)》
【新书】《人工智能智能体的应用》(527 页)
《哥伦比亚大学:超越 Chatgpt 的 AI agent 综述》
《欧盟标准组织 - 体验式网络智能(ENI)- 基于人工智能代理的下一代网络切片研究》
《中国科学院:2024 开放地球引擎(OGE)研究进展与应用报告(55 页)》
《中国工程院:2024 农业机器人现状与展望报告(70 页)》
《美国安全与新兴技术中心:2025 中国学界对大语言模型的批判性思考:通用人工智能 (AGI) 的多元路径探索研究报告(29 页)》
《罗兰贝格:2050 年全球趋势纲要报告之趋势五:技术与创新(2025 年版)(72 页)》
《理特咨询(ADL):2025 解锁聚变能源:驾驭聚变能商业化的机遇与挑战研究报告(20 页)》
《埃森哲:技术展望 2025—AI 自主宣言:可能无限信任惟先 - 摘要(12 页)》
《怡安(AON):2025 年气候和自然灾难洞察报告(109 页)》
《美国安全与新兴技术中心:2025 AI 翻车事故(AI incident):强制性报告制度的关键要素研究报告(32 页)》
《牛津经济研究院 2025 确保英国充分释放量子计算的经济潜力研究报告 》(英文版 64 页)
《欧洲创新委员会(EIC):2024 年科技报告(65 页)》
《大模型基础 完整版》
《国际人工智能安全报告》(300 页)
《怡安(AON):2025 年全球医疗趋势报告(19 页)》
《前瞻:2025 年脑机接口产业蓝皮书 —— 未来将至打造人机交互新范式(57 页)》
《联合国(United Nations):2024 技术与统计报告:从业者投资法指南(67 页)》
《经济学人智库(EIU):2025 全球展望报告:特朗普再次当选美国总统的全球影响(16 页)》
《大规模视觉 - 语言模型的基准、评估、应用与挑战》
《大规模安全:大模型安全的全面综述》
《Emplifi:2024 年 Q4 全球电商行业基准报告 - 社交媒体趋势洞察(37 页)》
《DeepMind:2025 生成式魂灵:预测人工智能来世的益处和风险研究报告(23 页)》
【AI4Science】《利用大型语言模型变革科学:关于人工智能辅助科学发现、实验、内容生成与评估的调研》
《世界银行:2025 极端天气高昂代价:气候变化背景下的马拉维金融韧性构建研究报告(76 页)》
《北京理工大学:2025 年中国能源经济指数研究及展望报告》
《Space Capital:2024 年第四季度太空投资报告(22 页)》
《NetDocuments:2025 年法律科技趋势报告(32 页)》
《CB Insights:2024 年度全球企业风险投资(CVC)状况报告:私募市场交易、投融资数据及分析(130 页)》
《Artlist:2025 年全球内容与创意趋势报告(59 页)》
《IBM 商业价值研究院:2024 投资人工智能伦理和治理必要性研究报告:AI 伦理前线五位高管的真实故事(24 页)》
《世界基准联盟(WBA):2025 塑造未来:对可持续发展目标(SDGs)影响最大的 2000 家公司研究报告(46 页)》
《清华大学:2025 年 DeepSeek 从入门到精通(104 页)》
《麦肯锡:2025 工作场所中的超级代理 (Superagency):赋能人类解锁人工智能的全部潜力(47 页)》
《凯捷(Capgemini):科技愿景 2025:关键新兴科技趋势探索(54 页)》
《硅谷银行(SVB):2025 年上半年全球创新经济展望报告(39 页)》
《BCG:2025 工业运营前沿技术:AI 智能体 (AI Agents) 的崛起白皮书(26 页)》
《DrakeStar:2024 年全球游戏与电竞行业报告(26 页)》
《理特咨询(ADL):2025 人工智能驱动的研究、开发与创新突破的新时代研究报告(80 页)》
《互联网安全中心(CIS):2024 年网络安全冬季报告:回顾与展望(30 页)》
《方舟投资(ARK Invest):Big Ideas 2025 - 年度投研报告(148 页)》
《DeepSeek:2024 年 DeepSeek-V2 模型技术报告:经济、高效的混合专家语言模型(52 页)》
《CB Insights:2024 年度全球风险投资状况回顾报告:私募市场交易、投融资和退出数据及分析(273 页)》
《全国智标委:2025 城市生命线数字化标准体系研究报告(105 页)》
《经合组织(OECD):2024 年全球政府创新趋势报告:促进以人为本的公共服务(46 页)》
《DeepSeek_R1 技术报告》
《摩根斯坦利报告 —DeepSeek 对于科技和更广义经济的含义是什么?》
《李飞飞最新 S1 模型的论文:s1 Simple test-time scaling》
《世界经济论坛 -《全球经济未来:2030 年的生产力》报告》
《2035 年技术融合估计:量子互联网、人机接口、机器学习系统、隐形机器人、增材制造》
《百页大语言模型新书》(209 页 pdf)
《量子技术和网络安全:技术、治理和政策挑战》(107 页)
《大语言模型中的对齐伪造》(137 页)
《2035 年技术融合估计:量子互联网、人机接口、机器学习系统、隐形机器人、增材制造》(美陆军 232 页)
《美国防部 CDAO:人工智能模型的测试与评估》(66 页 slides)
《自动驾驶的世界模型综述》
《Questel2024 深度学习领域专利全景报告》(英文版 34 页)
《深度解析 Palantir》(20250122_204934.pdf)
上下滑动查看更多