详解IMU标定经典论文:A Robust and Easy to Implement Method for IMU Calibration without External Equipments

在这里插入图片描述
本文介绍一篇 关于IMU 标定的经典论文,论文收录于 ICRA14,在论文中作者介绍了如何不适用外部设备标定 IMU 加速度和角速度偏差、尺度系数、轴偏移参数

论文链接:https://readpaper.com/paper/2021503353https://readpaper.com/paper/2211578699

项目链接:https://github.com/JzHuai0108/imu_tk_matlab


1. Sensor Error Model

首先介绍传感器误差模型,令 a O \mathbf{a}^{O} aO 表示为理想情况下的加速度数据, a S \mathbf{a}^{S} aS 表示为实际的加速度数据, T a = [ 1 − α y z α z y 0 1 − α z x 0 0 1 ] \mathbf{T}^{a}=\left[\begin{array}{ccc}1 & -\alpha_{y z} & \alpha_{z y} \\ 0 & 1 & -\alpha_{z x} \\ 0 & 0 & 1\end{array}\right] Ta=100αyz10αzyαzx1 表示从 a S \mathbf{a}^{S} aS a O \mathbf{a}^{O} aO 的旋转变换。 b a = [ b x a b y a b z a ] \mathbf{b}^{a}=\left[\begin{array}{l}b_{x}^{a} \\ b_{y}^{a} \\ b_{z}^{a}\end{array}\right] ba=bxabyabza 为加速度偏差, K a = [ s x a 0 0 0 s y a 0 0 0 s z a ] \mathbf{K}^{a}=\left[\begin{array}{ccc}s_{x}^{a} & 0 & 0 \\ 0 & s_{y}^{a} & 0 \\ 0 & 0 & s_{z}^{a}\end{array}\right] Ka=sxa000sya000sza 为加速度尺度系数, ν a \boldsymbol{\nu}^{a} νa 为加速度测量噪声,则可以得到加速度误差模型
a O = T a K a ( a S + b a + ν a ) \mathbf{a}^{O}=\mathbf{T}^{a} \mathbf{K}^{a}\left(\mathbf{a}^{S}+\mathbf{b}^{a}+\boldsymbol{\nu}^{a}\right) aO=TaKa(aS+ba+νa)

同样也可以得到角速度误差模型,令 T g = [ 1 − γ y z γ z y γ x z 1 − γ z x − γ x y γ y x 1 ] \mathbf{T}^{g}=\left[\begin{array}{ccc}1 & -\gamma_{y z} & \gamma_{z y} \\ \gamma_{x z} & 1 & -\gamma_{z x} \\ -\gamma_{x y} & \gamma_{y x} & 1\end{array}\right] Tg=1γxzγxyγyz1γyxγzyγzx1 K g = [ s x g 0 0 0 s y g 0 0 0 s z g ] \mathbf{K}^{g}=\left[\begin{array}{ccc}s_{x}^{g} & 0 & 0 \\ 0 & s_{y}^{g} & 0 \\ 0 & 0 & s_{z}^{g}\end{array}\right] Kg=sxg000syg000szg b g = [ b x g b y g b z g ] \mathbf{b}^{g}=\left[\begin{array}{l}b_{x}^{g} \\ b_{y}^{g} \\ b_{z}^{g}\end{array}\right] bg=bxgbygbzg ν g \boldsymbol{\nu}^{g} νg 为角速度测量噪声,则角速度误差模型为:

ω O = T g K g ( ω S + b g + ν g ) \boldsymbol{\omega}^{O}=\mathbf{T}^{g} \mathbf{K}^{g}\left(\boldsymbol{\omega}^{S}+\mathbf{b}^{g}+\boldsymbol{\nu}^{g}\right) ωO=TgKg(ωS+bg+νg)


2. Basic Calibration Framework

加速度标定我们需要估计的未知参数为:
θ a c c = [ α y z , α z y , α z x , s x a , s y a , s z a , b x a , b y a , b z a ] \theta^{a c c}=\left[\alpha_{y z}, \alpha_{z y}, \alpha_{z x}, s_{x}^{a}, s_{y}^{a}, s_{z}^{a}, b_{x}^{a}, b_{y}^{a}, b_{z}^{a}\right] θacc=[αyz,αzy,αzx,sxa,sya,sza,bxa,bya,bza]

此时我们可以忽略测量噪声,则加速度误差模型简化为:
a O = T a K a ( a S + b a ) \mathbf{a}^{O}=\mathbf{T}^{a} \mathbf{K}^{a}\left(\mathbf{a}^{S}+\mathbf{b}^{a}\right) aO=TaKa(aS+ba)

正如在传统的多位置策略中,我们将 IMU 置于 M M M 个不同的位置,在每一个静止周期内读取加速度测量值 a k S \mathbf{a}^{S}_{k} akS,我们可以使用以下损失函数来估计加速度误差模型参数:
L ( θ a c c ) = ∑ k = 1 M ( ∥ g ∥ 2 − ∥ h ( a k S , θ a c c ) ∥ 2 ) 2 \mathbf{L}\left(\boldsymbol{\theta}^{a c c}\right)=\sum_{k=1}^{M}\left(\|\mathbf{g}\|^{2}-\left\|h\left(\mathbf{a}_{k}^{S}, \boldsymbol{\theta}^{a c c}\right)\right\|^{2}\right)^{2} L(θacc)=k=1M(g2h(akS,θacc)2)2

其中, ∣ ∣ g ∥ ||\mathbf{g}\| g当地重力加速度幅值。损失函数程序为:

function [res_vector] = accCostFunctLSQNONLIN(E, a_hat, magnitude)
	misalignmentMatrix = [1, -E(1), E(2); 0, 1, -E(3); 0, 0, 1];
	scalingMtrix = diag([E(4), E(5), E(6)]);
	
	a_bar = misalignmentMatrix*scalingMtrix*(a_hat + (diag([E(7), E(8), E(9)])*ones(3, size(a_hat,2))));
	
	% Magnitude taken from tables 
	if(nargin<3)
	    magnitude = 9.81744;
	end
	
	residuals = zeros(length(a_bar(1,:)), 1);
	
	for i = 1:length(a_bar(1,:))
	    residuals(i,1) = (magnitude^2 - (a_bar(1,i)^2 + a_bar(2,i)^2 + a_bar(3,i)^2))^2;
	end
	
	res_vector = residuals;

end

我们使用同样的静止周期来标定陀螺仪。在这里我们通过对初始静止时刻角速度值求平均来得到角速度偏差。这样我们需要求解的参数简化为:
θ g y r o = [ γ y z , γ z y , γ x z , γ z x , γ x y , γ y x , s x g , s y g , s z g ] \boldsymbol{\theta}^{g y r o}=\left[\gamma_{y z}, \gamma_{z y}, \gamma_{x z}, \gamma_{z x}, \gamma_{x y}, \gamma_{y x}, s_{x}^{g}, s_{y}^{g}, s_{z}^{g}\right] θgyro=[γyz,γzy,γxz,γzx,γxy,γyx,sxg,syg,szg]

我们使用标定后的加速度数据作为参考,给定一个初始的重力向量,对角速度数据进行积分,我们可以估计最终的重力向量,则损失函数可以写为:
L ( θ g y r o ) = ∑ k = 2 M ∥ u a , k − u g , k ∥ 2 \mathbf{L}\left(\boldsymbol{\theta}^{g y r o}\right)=\sum_{k=2}^{M}\left\|\mathbf{u}_{a, k}-\mathbf{u}_{g, k}\right\|^{2} L(θgyro)=k=2Mua,kug,k2

其中, u a , k \mathbf{u}_{a, k} ua,k 是标定后的加速度向量, u g , k \mathbf{u}_{g, k} ug,k 是估计后的重力向量。角速度积分这里使用的是 RK4,不过目前 IMU 的采样频率都很高了,一般很少再使用了。


3. Calibration Procedure

A. Static Detector

IMU 标定的准确性非常依赖于静止和运动时间间隔的准确区分,为了标定加速度计我们使用静止周期,标定陀螺仪我们使用两个静态周期之间的动态时间间隔。我们这里使用基于方差的静止检测器,对于时间周期长度 t w a i t t_{wait} twait 秒,我们有加速度 ( a x t , a y t , a z t ) \left(\mathbf{a}_{x}^{t}, \mathbf{a}_{y}^{t}, \mathbf{a}_{z}^{t}\right) (axt,ayt,azt),然后我们计算标准差:
ς ( t ) = [ var ⁡ t w ( a x t ) ] 2 + [ var ⁡ t w ( a y t ) ] 2 + [ var ⁡ t w ( a z t ) ] 2 \varsigma(t)=\sqrt{\left[\operatorname{var}_{t_{w}}\left(\mathbf{a}_{x}^{t}\right)\right]^{2}+\left[\operatorname{var}_{t_{w}}\left(\mathbf{a}_{y}^{t}\right)\right]^{2}+\left[\operatorname{var}_{t_{w}}\left(\mathbf{a}_{z}^{t}\right)\right]^{2}} ς(t)=[vartw(axt)]2+[vartw(ayt)]2+[vartw(azt)]2

我们通过比较方标准差 ς ( t ) \varsigma(t) ς(t) 是否大于某一阈值来区分静止和运动状态。我们将初始方差 ς i n i t \varsigma_{init} ςinit 扩大整数倍来作为阈值。下图是静止检测器的检测结果,这里整数倍为6倍。

在这里插入图片描述


B. Runge-Kutta Integration

下面简单介绍下四阶龙格库塔法,这里主要用在陀螺仪的标定。四元数微分方程为:
f ( q , t ) = q ˙ = 1 2 Ω ( ω ( t ) ) q \mathbf{f}(\mathbf{q}, t)=\dot{\mathbf{q}}=\frac{1}{2} \boldsymbol{\Omega}(\boldsymbol{\omega}(t)) \mathbf{q} f(q,t)=q˙=21Ω(ω(t))q

其中, Ω ( ω ) \Omega(\boldsymbol{\omega}) Ω(ω) 是一个反对称矩阵,形式为:
Ω ( ω ) = [ 0 − ω x − ω y − ω z ω x 0 ω z − ω y ω y − ω z 0 ω x ω z ω y − ω x 0 ] \boldsymbol{\Omega}(\boldsymbol{\omega})=\left[\begin{array}{cccc} 0 & -\omega_{x} & -\omega_{y} & -\omega_{z} \\ \omega_{x} & 0 & \omega_{z} & -\omega_{y} \\ \omega_{y} & -\omega_{z} & 0 & \omega_{x} \\ \omega_{z} & \omega_{y} & -\omega_{x} & 0 \end{array}\right] Ω(ω)=0ωxωyωzωx0ωzωyωyωz0ωxωzωyωx0

四阶龙格库塔法原理为:
q k + 1 = q k + Δ t 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) k i = f ( q ( i ) , t k + c i Δ t ) ,  for  i = 1 q ( i ) = q k ,  for  i > 1 q ( i ) = q k + Δ t ∑ j = 1 i − 1 a i j k j , \begin{array}{ll} \mathbf{q}_{k+1}=\mathbf{q}_{k}+\Delta t \frac{1}{6}\left(\mathbf{k}_{1}+2 \mathbf{k}_{2}+2 \mathbf{k}_{3}+\mathbf{k}_{4}\right) \\ \mathbf{k}_{i}=\mathbf{f}\left(\mathbf{q}^{(i)}, t_{k}+c_{i} \Delta t\right), & \text { for } i=1 \\ \mathbf{q}^{(i)}=\mathbf{q}_{k}, & \text { for } i>1 \\ \mathbf{q}^{(i)}=\mathbf{q}_{k}+\Delta t \sum_{j=1}^{i-1} a_{i j} \mathbf{k}_{j}, & \end{array} qk+1=qk+Δt61(k1+2k2+2k3+k4)ki=f(q(i),tk+ciΔt),q(i)=qk,q(i)=qk+Δtj=1i1aijkj, for i=1 for i>1

各个参数为:
c 1 = 0 , c 2 = 1 2 , c 3 = 1 2 , c 4 = 1 a 21 = 1 2 , a 31 = 0 , a 41 = 0 a 32 = 1 2 , a 42 = 0 , a 43 = 1 \begin{gathered} c_{1}=0, \quad c_{2}=\frac{1}{2}, \quad c_{3}=\frac{1}{2}, \quad c_{4}=1 \\ a_{21}=\frac{1}{2}, \quad a_{31}=0, \quad a_{41}=0 \\ a_{32}=\frac{1}{2}, \quad a_{42}=0, \quad a_{43}=1 \end{gathered} c1=0,c2=21,c3=21,c4=1a21=21,a31=0,a41=0a32=21,a42=0,a43=1

最终得到积分后的四元数,还需要再转化为单位四元数,整个RK4 程序为:

function [R] = rotationRK4(omega, dt)

	omega_x = omega(1,:);
	omega_y = omega(2,:);
	omega_z = omega(3,:);
	
	num_samples = length(omega_x);
	
	q_k = fromOmegaToQ([omega_x(1); omega_y(1); omega_z(1)], [dt])';
	q_next_k = q_k; % was [0; 0; 0; 0]; changed by Huai

	for i = 1:num_samples - 1
	    
	    % first Runge-Kutta coefficient
	    q_i_1 = q_k;
	    OMEGA_omega_t_k = ...
	        [0           -omega_x(i)  -omega_y(i)  -omega_z(i);
	        omega_x(i)   0            omega_z(i)   -omega_y(i);
	        omega_y(i)   -omega_z(i)  0            omega_x(i);
	        omega_z(i)   omega_y(i)   -omega_x(i)  0          ];
	    k_1 = (1/2)*OMEGA_omega_t_k*q_i_1;
	    
	    % second Runge-Kutta coefficient
	    q_i_2 = q_k + dt*(1/2)*k_1;
	    OMEGA_omega_t_k_plus_half_dt = ...
	        [0                                -(omega_x(i) + omega_x(i + 1))/2   -(omega_y(i) + omega_y(i + 1))/2  -(omega_z(i) + omega_z(i + 1))/2;
	        (omega_x(i) + omega_x(i + 1))/2   0                                  (omega_z(i) + omega_z(i + 1))/2   -(omega_y(i) + omega_y(i + 1))/2;
	        (omega_y(i) + omega_y(i + 1))/2   -(omega_z(i) + omega_z(i + 1))/2   0                                 (omega_x(i) + omega_x(i + 1))/2;
	        (omega_z(i) + omega_z(i + 1))/2   (omega_y(i) + omega_y(i + 1))/2    -(omega_x(i) + omega_x(i + 1))/2  0                              ];
	    k_2 = (1/2)*OMEGA_omega_t_k_plus_half_dt*q_i_2;
	    
	    % third Runge-Kutta coefficient
	    q_i_3 = q_k + dt*(1/2)*k_2;
	    OMEGA_omega_t_k_plus_half_dt = ...
	        [0                                -(omega_x(i) + omega_x(i + 1))/2   -(omega_y(i) + omega_y(i + 1))/2  -(omega_z(i) + omega_z(i + 1))/2;
	        (omega_x(i) + omega_x(i + 1))/2   0                                  (omega_z(i) + omega_z(i + 1))/2   -(omega_y(i) + omega_y(i + 1))/2;
	        (omega_y(i) + omega_y(i + 1))/2   -(omega_z(i) + omega_z(i + 1))/2   0                                 (omega_x(i) + omega_x(i + 1))/2;
	        (omega_z(i) + omega_z(i + 1))/2   (omega_y(i) + omega_y(i + 1))/2    -(omega_x(i) + omega_x(i + 1))/2  0                              ];
	    k_3 = (1/2)*OMEGA_omega_t_k_plus_half_dt*q_i_3;
	    
	    % forth Runge-Kutta coefficient
	    q_i_4 = q_k + dt*1*k_3;
	    OMEGA_omega_t_k_plus_dt = ...
	        [0               -omega_x(i + 1)  -omega_y(i + 1)  -omega_z(i + 1);
	        omega_x(i + 1)   0                omega_z(i + 1)   -omega_y(i + 1);
	        omega_y(i + 1)   -omega_z(i + 1)  0                omega_x(i + 1);
	        omega_z(i + 1)   omega_y(i + 1)   -omega_x(i + 1)  0          ];
	    k_4 = (1/2)*OMEGA_omega_t_k_plus_dt*q_i_4;
	   
	    q_next_k = q_k + dt*((1/6)*k_1 + (1/3)*k_2 + (1/3)*k_3 + (1/6)*k_4);
	    
	    q_next_k = q_next_k/norm(q_next_k);
	
	    q_k = q_next_k;
	    
	end
	
	R = inv(fromQtoR(q_next_k));

end

C. Complete Procedure

为了避免标定参数估计中的不可观察性,至少需要收集IMU9个不同姿态的数据,姿态数越多,标定结果越准确。整个标定算法如下,需要知道采集好的加速度数据 a S \mathbf{a}^{S} aS 和角速度数据 ω S \boldsymbol{\omega}^{S} ωS,初始静止时间 T i n i t T_{init} Tinit,以及运动后的静止时间 t w a i t t_{wait} twait

  • 首先根据初始时间计算陀螺仪偏差 b g \boldsymbol{b}^g bg
  • 根据计算后的陀螺仪偏差得到无偏角速度数据 ω b i a s f r e e S \boldsymbol{\omega}^{S}_{biasfree} ωbiasfreeS
  • 计算初始协方差 ς i n i t \varsigma_{init} ςinit ;
  • i = 1 : k i=1:k i=1:k ,根据等待时间 t w a i t t_{wait} twait 和阈值计算静止间隔、再根据静止间隔 t w a i t t_{wait} twait 和加速度数据得到估计参数;
  • 最后选取残差最小对应的参数为加速度标定参数,然后再使用同样的静止周期计算陀螺仪标定参数;
    在这里插入图片描述
  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值