如何在Python中利用CVXOPT求解二次规划问题

问题描述:

  • 在实际生活中,我们经常会遇到一些优化问题,简单的线性规划可以作图求解,但是对于目标函数包含二次项时,则需要另觅它法

  • 在金融实践中,马科维茨均方差模型就有实际的二次优化需求

作为金融实践中常用的方法,本篇将对CVXOPT中求解二次规划的问题进行举例详细说明,关于该方法在均方差优化中的实践应用,参见后续发帖

1、二次规划问题的标准形式

 

min12xTPx+qTx
s.t.Gx≤h
Ax=b
上式中,x为所要求解的列向量,xT表示x的转置

 

 

接下来,按步骤对上式进行相关说明:

  • 上式表明,任何二次规划问题都可以转化为上式的结构,事实上用cvxopt的第一步就是将实际的二次规划问题转换为上式的结构,写出对应的P、q、G、h、A、b

  • 目标函数若为求max,可以通过乘以−1,将最大化问题转换为最小化问题

  • Gx≤b表示的是所有的不等式约束,同样,若存在诸如x≥0的限制条件,也可以通过乘以−1转换为"≤"的形式

  • Ax=b表示所有的等式约束

2、以一个标准的例子进行过程说明

 

min(x,y)12x2+3x+4y
s.t.x,y≥0
x+3y≥15
2x+5y≤100
3x+4y≤80

 

 

例子中,需要求解的是x,y,我们可以把它写成向量的形式,同时,也需要将限制条件按照上述标准形式进行调整,用矩阵形式表示,如下所示:

 

min(x,y)12[xy]T[1000][xy]+[34]T[xy]
[−10 0−1 \-1−3 25 34][xy]≤⎡⎣⎢⎢⎢00 \-1510080⎤⎦⎥⎥⎥

 

 

  • 如上所示,目标函数和限制条件均转化成了二次规划的标准形式,这是第一步,也是最难的一步,接下来的事情就简单了
  • 对比上式和标准形式,不难得出:
    P=[1000],q=[34],G=[−10 0−1 \-1−3 25 34],h=⎡⎣⎢⎢⎢00 \-1510080⎤⎦⎥⎥⎥

接下来就是几行简单的代码,目的是告诉计算机上面的参数具体是什么

 
 
 
 
 
 
1
from cvxopt  import solvers, matrix  cvxopt  import solvers, matrix 
2
P = matrix([[1.0,0.0],[0.0,0.0]])   # matrix里区分int和double,所以数字后面都需要加小数点 = matrix([[1.0,0.0],[0.0,0.0]])   # matrix里区分int和double,所以数字后面都需要加小数点
3
q = matrix([3.0,4.0]) = matrix([3.0,4.0])
4
G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]]) = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])
5
h = matrix([0.0,0.0,-15.0,100.0,80.0]) = matrix([0.0,0.0,-15.0,100.0,80.0])
6
7
sol = solvers.qp(P,q,G,h)   # 调用优化函数solvers.qp求解 = solvers.qp(P,q,G,h)   # 调用优化函数solvers.qp求解
8
print sol['x']  # 打印结果,sol里面还有很多其他属性,读者可以自行了解 sol['x']  # 打印结果,sol里面还有很多其他属性,读者可以自行了解
 
 
 
查看全部
     pcost       dcost       gap    pres   dres

0:  1.0780e+02 -7.6366e+02  9e+02  1e-16  4e+01
1:  9.3245e+01  9.7637e+00  8e+01  1e-16  3e+00
2:  6.7311e+01  3.2553e+01  3e+01  6e-17  1e+00
3:  2.6071e+01  1.5068e+01  1e+01  2e-16  7e-01
4:  3.7092e+01  2.3152e+01  1e+01  2e-16  4e-01
5:  2.5352e+01  1.8652e+01  7e+00  8e-17  3e-16
6:  2.0062e+01  1.9974e+01  9e-02  6e-17  3e-16
7:  2.0001e+01  2.0000e+01  9e-04  6e-17  3e-16
8:  2.0000e+01  2.0000e+01  9e-06  9e-17  2e-16
Optimal solution found.
[ 7.13e-07]
[ 5.00e+00]
 
  • 看了上面的代码,是不是觉得很简单。因为难点不在代码,而是在于将实际优化问题转化为标准形式的过程
  • 在上面的例子中,并没有出现等号,当出现等式约束时,过程一样,找到A,b,然后运行代码 sol = solvers.qp(P,q,G,h,A,b) 即可求解

扩展:上述定义各个矩阵参数用的是最直接的方式,其实也可以结合Numpy来定义上述矩阵

 
 
 
 
 
 
1
from cvxopt import solvers, matrix cvxopt import solvers, matrix
2
import numpy as np numpy as np
3
4
P = matrix(np.diag([1.0,0]))  #  对于一些特殊矩阵,用numpy创建会方便很多(在本例中可能感受不大) = matrix(np.diag([1.0,0]))  #  对于一些特殊矩阵,用numpy创建会方便很多(在本例中可能感受不大)
5
q = matrix(np.array([3.0,4])) = matrix(np.array([3.0,4]))
6
G = matrix(np.array([[-1.0,0],[0,-1],[-1,-3],[2,5],[3,4]])) = matrix(np.array([[-1.0,0],[0,-1],[-1,-3],[2,5],[3,4]]))
7
h = matrix(np.array([0.0,0,-15,100,80])) = matrix(np.array([0.0,0,-15,100,80]))
8
sol = solvers.qp(P,q,G,h) = solvers.qp(P,q,G,h)
 
 
 
查看全部
     pcost       dcost       gap    pres   dres

0:  1.0780e+02 -7.6366e+02  9e+02  1e-16  4e+01
1:  9.3245e+01  9.7637e+00  8e+01  1e-16  3e+00
2:  6.7311e+01  3.2553e+01  3e+01  6e-17  1e+00
3:  2.6071e+01  1.5068e+01  1e+01  2e-16  7e-01
4:  3.7092e+01  2.3152e+01  1e+01  2e-16  4e-01
5:  2.5352e+01  1.8652e+01  7e+00  8e-17  3e-16
6:  2.0062e+01  1.9974e+01  9e-02  6e-17  3e-16
7:  2.0001e+01  2.0000e+01  9e-04  6e-17  3e-16
8:  2.0000e+01  2.0000e+01  9e-06  9e-17  2e-16
Optimal solution found.

  • 7
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
Python求解二次规划(cvxopt)是使用cvxopt的函数来实现的。将二次规划问题转化为标准的凸优化问题,然后通过cvxopt的函数来求解得到问题的最优解。 首先,需要安装cvxopt库,可以使用pip install cvxopt命令进行安装。 在Python,可以使用cvxopt的matrix和solvers来定义和求解二次规划问题。 首先,通过导入cvxopt库,可以使用matrix函数来定义二次规划问题的数据。matrix函数可以将数组转化为cvxopt的矩阵形式。 接下来,利用cvxopt的solvers函数来求解二次规划问题。solvers.qp函数是用于求解二次规划问题的主要函数。在函数需要提供二次规划问题的参数,如目标函数的系数,不等式约束的系数矩阵以及约束条件。 最后,使用solve函数来解决二次规划问题,并返回最优解。 例如,下面是一个使用cvxopt求解二次规划问题的例子: ```python from cvxopt import matrix, solvers # 定义二次规划问题的参数 P = matrix([[1.0, 0.0], [0.0, 1.0]]) q = matrix([-2.0, -3.0]) G = matrix([[-1.0, 0.0], [0.0, -1.0]]) h = matrix([0.0, 0.0]) A = matrix([[1.0, 1.0]]) b = matrix([1.0]) # 求解二次规划问题 sol = solvers.qp(P, q, G, h, A, b) # 输出最优解 print(sol['x']) ``` 这段代码会输出二次规划问题的最优解。其,P、q、G、h、A、b分别代表二次规划问题的目标函数系数、不等式约束的系数矩阵以及约束条件。 这就是使用cvxopt的函数来求解二次规划问题的基本步骤。可以根据具体的问题进行相应的调整和设置参数,求解问题的最优解。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熊野君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值