GAT 和 GCN 的核心区别在于如何收集并累和距离为 1 的邻居节点的特征表示。
图卷积网络GCN
图卷积网络 Graph Convolutional Network (GCN) 告诉我们将局部的图结构和节点特征结合可以在节点分类任务中获得不错的表现。美中不足的是 GCN 结合邻近节点特征的方式和图的结构依依相关,这局限了训练所得模型在其他图结构上的泛化能力,(GraphSAGE 提出了解决方法,一种采用相同节点特征更新规则的模型,唯一的区别是他们将 Cij 设为了|N(i)|。)。
GCN一次节点特征的计算如图,是对相邻节点特征的标准化求和:
等式左侧是第l+1次更新的节点i的特征值,σ是激活函数(GCN用的是relu),cij是根据图的结构计算出的标准化常数,因为不同的图结构计算出的cij不同,所以GCN的泛化性能比较差。W是节点特征转换的权重矩阵,将l层的特征计算得l+1层特征,所有节点共享。
图注意力网络
Graph Attention Network (GAT) 提出了用注意力机制对邻近节点特征加权求和。邻近节点特征的权重完全取决于节点特征,独立于图结构。图注意力机制用注意力机制代替了上述的图卷积中的标准化操作,对节点特征的一次更新的过程和计算公式如图: