图注意力机制GAT和图注意力网络GCN的区别

本文探讨了图卷积网络GCN与图注意力网络GAT的区别。GCN通过标准化邻近节点特征求和,而GAT引入注意力机制,使节点特征权重依赖于自身而非图结构,提高了泛化性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GAT 和 GCN 的核心区别在于如何收集并累和距离为 1 的邻居节点的特征表示。

图卷积网络GCN

图卷积网络 Graph Convolutional Network (GCN) 告诉我们将局部的图结构和节点特征结合可以在节点分类任务中获得不错的表现。美中不足的是 GCN 结合邻近节点特征的方式和图的结构依依相关,这局限了训练所得模型在其他图结构上的泛化能力,(GraphSAGE 提出了解决方法,一种采用相同节点特征更新规则的模型,唯一的区别是他们将 Cij 设为了|N(i)|。)。
GCN一次节点特征的计算如图,是对相邻节点特征的标准化求和:
GCN第l+1层特征值更新公式

等式左侧是第l+1次更新的节点i的特征值,σ是激活函数(GCN用的是relu),cij是根据图的结构计算出的标准化常数,因为不同的图结构计算出的cij不同,所以GCN的泛化性能比较差。W是节点特征转换的权重矩阵,将l层的特征计算得l+1层特征,所有节点共享。

图注意力网络

Graph Attention Network (GAT) 提出了用注意力机制对邻近节点特征加权求和。邻近节点特征的权重完全取决于节点特征,独立于图结构。图注意力机制用注意力机制代替了上述的图卷积中的标准化操作,对节点特征的一次更新的过程和计算公式如图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值