【深度学习】绘制模型参数量、推理时间以及检测精度mAP的图

绘制模型参数量、推理时间以及检测精度mAP的图

显示效果如下图所示
在这里插入图片描述
代码如下:

import matplotlib.pyplot as plt
import numpy as np

# 定义更新后的函数以绘制性能图表
def plot_model_performance(data):
	# 输入:data矩阵
	# 每一行代表一个模型,第一列为模型参数量(百万),第二列为推理时间,第三列为mAP
    # 检查数据是否为二维且至少有三列
    if data.shape[1] < 3:
        raise ValueError("Data must have at least three columns (model params, inference time, and mAP)")
    # 预定义颜色和标记列表
    colors = ['blue', 'green', 'red', 'purple', 'orange', 'brown', 'cyan', 'magenta', 'yellow', 'black']
    markers = ['o', 's', '^', 'v', '<', '>', 'p', '*', '+', 'x']
    # 创建图表并设置尺寸
    plt.figure(figsize=(20, 6))

    # 第一个图:推理时间 vs. mAP
    plt.subplot(1, 2, 1)
    for idx in range(data.shape[0]):
        plt.scatter(data[idx, 1], data[idx, 2], s=150, color=colors[idx % len(colors)], label=f'Model {idx+1}', marker=markers[idx % len(markers)], edgecolors='black')
    plt.title('Inference Time vs. mAP', fontsize=16, fontweight='bold')
    plt.xlabel('Inference Time (seconds)', fontsize=14)
    plt.ylabel('mAP (%)', fontsize=14)
    plt.ylim(50, 90)
    plt.grid(True, linestyle='--', alpha=0.6)
    plt.legend()

    # 第二个图:模型参数量 vs. mAP
    plt.subplot(1, 2, 2)
    for idx in range(data.shape[0]):
        plt.scatter(data[idx, 0], data[idx, 2], s=150, color=colors[idx % len(colors)], label=f'Model {idx+1}', marker=markers[idx % len(markers)], edgecolors='black')
    plt.title('Model Parameters vs. mAP', fontsize=16, fontweight='bold')
    plt.xlabel('Model Parameters (millions)', fontsize=14)
    plt.ylabel('mAP (%)', fontsize=14)
    plt.ylim(50, 90)
    plt.grid(True, linestyle='--', alpha=0.6)
    plt.legend()

    # 显示图表
    plt.show()


if __name__ == '__main__':
    # 模拟一些数据,第一列为模型参数量(百万),第二列为推理时间,第三列为mAP
    data = np.array([
        [2.5, 0.3, 75],
        [3.5, 0.5, 80],
        [1.5, 0.2, 70],
        [4.0, 0.4, 78],
        [2.8, 0.55, 83]
    ])

    # 调用函数绘制性能图表
    plot_model_performance(data)
<think>好的,我现在需要解决用户关于如何在RT-DETR中评估自定义训练模型的性能指标的问题,包括mAP、Recall、FPS和参数量。首先,我得回忆一下RT-DETR的基本框架和相关评估指标的计算方法。 用户提到的mAP、Recall、FPS和参数量都是深度学习模型评估的重要指标。我需要分步骤解释每个指标的定义和计算方法。首先,mAP(平均精度均值)是目标检测中常用的评估指标,涉及到Precision和Recall的计算,以及PR曲线下的面积。需要确认RT-DETR是否在训练过程中自动输出这些指标,或者是否需要额外工具生成。 然后是Recall,即召回率,它衡量的是模型检测出正样本的能力。计算Recall需要知道真正例和假反例的数量。这部分可能需要使用验证集的数据,通过模型预测结果与真实标签对比得到。 FPS(每秒帧数)涉及模型的计算效率,通常与硬件环境相关。需要说明如何在RT-DETR中测量FPS,比如固定输入尺寸、预热次数、多次推理取平均等步骤,确保结果准确。 参数量是指模型中的可训练参数总数,这部分相对简单,可以通过PyTorch的summary库或者手动计算各层参数之和来获得。需要提醒用户注意,参数量模型复杂度直接相关,但和计算速度(FPS)不一定线性相关。 接下来,我需要考虑用户可能的实际操作步骤,比如使用验证集生成预测结果,然后利用评估脚本计算各项指标。可能还需要引用相关文档或代码示例,比如使用COCO API计算mAP,或者RT-DETR自带的评估工具。 同时,用户提供的引用中有提到PR曲线和AP值,这可能与mAP的计算有关,需要指出这些引用中的相关内容,说明如何利用PR曲线来评估模型性能。但要注意引用[2]似乎不相关,可能不需要涉及。 最后,生成相关问题时要确保问题与主题相关,帮助用户深入理解,比如如何提升mAP、优化FPS的方法,或者比较不同模型参数量等。</think>### RT-DETR自定义训练模型性能评估方法 在RT-DETR中评估自定义训练模型的性能,需重点关注以下指标的计算逻辑和实现步骤: --- #### 1. **mAP(平均精度均值)** - **定义**:基于不同置信度阈值下的精确率-召回率曲线(PR曲线)计算,反映模型整体检测精度。 - **计算方法**: 1. 对验证集生成预测结果(边界框坐标、类别、置信度) 2. 与标注真值计算IoU(交并比),设定阈值(默认0.5) 3. 统计每个类别的TP(真正例)、FP(假正例)、FN(假反例) 4. 绘制PR曲线并计算AP(曲线下面积),对所有类别AP取平均得mAP - **实现工具**:COCO API或RT-DETR内置评估脚本 ```bash python tools/eval.py --data your_data.yaml --weights model.pt --iou 0.5 ``` [^1] --- #### 2. **Recall(召回率)** - **公式**:$Recall = \frac{TP}{TP + FN}$ - **计算步骤**: 1. 固定IoU阈值(如0.5) 2. 统计所有测试样本中正确检测的正样本数量(TP) 3. 统计未被检测到的正样本数量(FN) 4. 通过验证集结果文件自动输出 --- #### 3. **FPS(每秒帧数)** - **测量规范**: ```python import time # 固定输入尺寸(如640x640) # 预热GPU(前10次迭代不计时) # 连续推理100次取平均 start = time.time() for _ in range(100): model(input_tensor) fps = 100 / (time.time() - start) ``` - **注意**:需在相同硬件环境下测试(如V100 GPU) --- #### 4. **参数量(Parameters)** - **查看方法**: ```python from torchsummary import summary summary(model, input_size=(3, 640, 640)) ``` - **直接计算**:参数量=∑(卷积核尺寸×输入通道数+偏置)×输出通道数 --- #### 完整评估流程 1. 准备标注格式为COCO的验证集 2. 运行评估命令生成`results.json` 3. 解析文件获取各指标数值 4. 使用`torchstat`等工具分析计算复杂度 $$ \text{FLOPs} = \sum_{l=1}^L (2 \times C_{in}^{(l)} \times K^{(l)} \times C_{out}^{(l)} \times H^{(l)} \times W^{(l)}) ) $$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值