GRPO vs PPO vs DPO

一、GRPO、PPO、DPO的通俗解释

  1. PPO(近端策略优化)
  • 核心思想:通过限制策略更新幅度来保证训练稳定性,属于Actor-Critic框架。策略模型(Actor)生成动作,价值模型(Critic)评估动作的长期收益,结合奖励模型优化策略。
  • 关键机制:
    • 剪切代理目标:防止策略更新过大导致性能崩溃。
    • KL散度惩罚:控制新旧策略的差异,避免偏离参考模型。
    • 熵奖励:鼓励策略多样性,避免过早收敛。
  • 典型流程:
    1. 生成文本样本(Rollout)。
    2. 计算广义优势估计(GAE)。
    3. 更新策略模型和价值模型。
  1. DPO(直接偏好优化)
  • 核心思想:直接优化模型的偏好,无需显式的奖励模型。通过成对比较(如“哪个回答更好”),调整模型参数以最大化偏好样本的对数似然。
  • 关键机制:
    • Bradley-Terry模型:基于成对比较计算概率,优化模型输出偏好。
    • 简化流程:跳过奖励模型训练,直接对比策略模型与参考模型的输出。
  • 典型流程:
    1. 准备包含“优选”和“拒选”样本的数据。
    2. 比较策略模型与参考模型的输出概率。
    3. 更新策略模型以提升优选样本的概率。
  1. GRPO(组相对策略优化)
  • 核心思想:分组采样+相对奖励,通过组内奖励归一化替代价值模型,简化优势估计。
  • 关键机制:
    • 分组采样:对同一问题生成多个输出(如5个数学题解法)。
    • 组内归一化:计算每个输出的奖励,高于组均值则奖励高,反之则低。
    • 无价值模型:直接使用相对奖励估计优势,减少计算资源。

二、三者的区别对比

对比维度PPODPOGRPO
核心目标稳定性优化,限制策略更新幅度直接优化偏好,简化训练流程高效推理,减少计算资源
是否需要价值模型需要(Critic模型)不需要不需要
奖励机制基于GAE和价值函数基于成对比较基于组内相对奖励
计算资源高(需训练Critic)中(依赖偏好数据质量)低(无需Critic)
探索能力强(熵奖励和策略梯度)弱(依赖已有偏好数据)中(分组采样提供多样性)
适用任务复杂环境(如机器人控制)偏好数据充足的任务(如对话生成)需要推理的任务(如数学、代码)

三、典型应用场景

  1. PPO
  • 适用场景:
    • 复杂环境控制:如机器人运动规划、游戏AI(需长期奖励和稳定策略)。
    • 多模态任务:结合视觉和语言的复杂交互场景。
  • 优势:稳定性强,适合需要精细控制的任务。
  1. DPO
  • 适用场景:
    • 偏好数据丰富的任务:如对话生成、内容推荐(需大量人类偏好对比数据)。
    • 快速微调:在已有模型基础上快速优化偏好。
  • 局限:对步骤错误敏感(如数学题中某一步出错,整个样本被惩罚)。
  1. GRPO
  • 适用场景:
    • 推理任务:如数学解题、代码生成(需过程监督和高效采样)。
    • 资源受限场景:训练大模型时降低显存和计算成本。
  • 优势:分组采样和相对奖励机制,适合需要多样化输出的推理任务。

四、总结选择建议

  • 需要稳定性且资源充足 → PPO。
  • 偏好数据充足且追求简化流程 → DPO。
  • 推理任务且需高效训练 → GRPO。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值