一、GRPO、PPO、DPO的通俗解释
- PPO(近端策略优化)
- 核心思想:通过限制策略更新幅度来保证训练稳定性,属于Actor-Critic框架。策略模型(Actor)生成动作,价值模型(Critic)评估动作的长期收益,结合奖励模型优化策略。
- 关键机制:
- 剪切代理目标:防止策略更新过大导致性能崩溃。
- KL散度惩罚:控制新旧策略的差异,避免偏离参考模型。
- 熵奖励:鼓励策略多样性,避免过早收敛。
- 典型流程:
- 生成文本样本(Rollout)。
- 计算广义优势估计(GAE)。
- 更新策略模型和价值模型。
- DPO(直接偏好优化)
- 核心思想:直接优化模型的偏好,无需显式的奖励模型。通过成对比较(如“哪个回答更好”),调整模型参数以最大化偏好样本的对数似然。
- 关键机制:
- Bradley-Terry模型:基于成对比较计算概率,优化模型输出偏好。
- 简化流程:跳过奖励模型训练,直接对比策略模型与参考模型的输出。
- 典型流程:
- 准备包含“优选”和“拒选”样本的数据。
- 比较策略模型与参考模型的输出概率。
- 更新策略模型以提升优选样本的概率。
- GRPO(组相对策略优化)
- 核心思想:分组采样+相对奖励,通过组内奖励归一化替代价值模型,简化优势估计。
- 关键机制:
- 分组采样:对同一问题生成多个输出(如5个数学题解法)。
- 组内归一化:计算每个输出的奖励,高于组均值则奖励高,反之则低。
- 无价值模型:直接使用相对奖励估计优势,减少计算资源。
二、三者的区别对比
对比维度 | PPO | DPO | GRPO |
---|---|---|---|
核心目标 | 稳定性优化,限制策略更新幅度 | 直接优化偏好,简化训练流程 | 高效推理,减少计算资源 |
是否需要价值模型 | 需要(Critic模型) | 不需要 | 不需要 |
奖励机制 | 基于GAE和价值函数 | 基于成对比较 | 基于组内相对奖励 |
计算资源 | 高(需训练Critic) | 中(依赖偏好数据质量) | 低(无需Critic) |
探索能力 | 强(熵奖励和策略梯度) | 弱(依赖已有偏好数据) | 中(分组采样提供多样性) |
适用任务 | 复杂环境(如机器人控制) | 偏好数据充足的任务(如对话生成) | 需要推理的任务(如数学、代码) |
三、典型应用场景
- PPO
- 适用场景:
- 复杂环境控制:如机器人运动规划、游戏AI(需长期奖励和稳定策略)。
- 多模态任务:结合视觉和语言的复杂交互场景。
- 优势:稳定性强,适合需要精细控制的任务。
- DPO
- 适用场景:
- 偏好数据丰富的任务:如对话生成、内容推荐(需大量人类偏好对比数据)。
- 快速微调:在已有模型基础上快速优化偏好。
- 局限:对步骤错误敏感(如数学题中某一步出错,整个样本被惩罚)。
- GRPO
- 适用场景:
- 推理任务:如数学解题、代码生成(需过程监督和高效采样)。
- 资源受限场景:训练大模型时降低显存和计算成本。
- 优势:分组采样和相对奖励机制,适合需要多样化输出的推理任务。
四、总结选择建议
- 需要稳定性且资源充足 → PPO。
- 偏好数据充足且追求简化流程 → DPO。
- 推理任务且需高效训练 → GRPO。