一、核心思路
雷达的目标跟踪与数据融合分别在雷达及组网雷达的数据处理系统中有着举足轻重的地位,目标跟踪与数据融合的效果在不同技术层面决定了雷达最终输出结果的好坏。优秀的目标跟踪算法能够对目标数据进行正确的分类形成多条航迹 数据,并且通过雷达组网数据融合还具有一定的抗干扰性能。
在实际应用中,对目标跟踪与数据融合的 高效性研究也十分重要,在单位时间内能够在有限的资源内处理更多的有效信息, 提升目标跟踪的数量和精度,特别是对于飞机以及一些其它武器装备携带雷达体积有限,高效的处理能力就够让其获得更强的目标跟踪能力,在对抗中赢得优势。
模拟地面 雷达的探测、跟踪、融合、干扰等相关功能,为仿真平台提供目标数据,以便实现整个系统的仿真功能。
三部雷达的功能分别侧重于目标搜索,目标跟踪,制导跟踪,所以三部雷达对跟踪要求 不相同,跟踪过程使用的算法也不尽相同。但三部雷达均为三维相控阵雷达,三部 雷达在目标跟踪和航迹处理方面功能是要能够对多目标进行监视、跟踪以及生成 相关目标的航迹,并且具有一定的航迹管理能力。
二、算法代码与仿真过程
基本思路
雷达目标跟踪与数据融合是一种综合利用雷达技术和数据融合算法来实现目标的跟踪和定位的方法。通过将从雷达接收到的目标信息与其他传感器(如红外线、光学等)的数据进行融合,可以提高目标跟踪的准确性和鲁棒性。这种技术在军事、航空航天、交通监控等领域具有广泛的应用。
雷达目标跟踪与数据融合的关键是将不同传感器的数据进行融合和处理,以获得更全面、准确的目标信息。这需要使用各种数据融合算法,如卡尔曼滤波、粒子滤波等,来对传感器数据进行融合和处理。通过综合利用不同传感器的信息,可以提高目标跟踪的鲁棒性和可靠性,并减少误报和虚警的概率。
雷达目标跟踪与数据融合领域的研究目前正处于不断发展和创新的阶段。随着传感器技术的不断进步和数据处理算法的不断优化,该领域的研究和应用前景非常广阔。未来,我们可以期待更高级别的目标跟踪和数据融合算法的出现,以及更广泛的应用领域。
流程图
目标跟踪流程,此图中,Dataprocessing为数据处理函数,是整个跟 踪系统的入口函数。通过对上图中的主要函数以及其它次要函数进行调度,实现雷 达从探测得到的点迹信息到航迹形成,航迹管理,航迹输出。如同图所示,在 跟踪模式下,数据处理系统检测到探测点矩阵PointNow中数据不为空时会存在以 下两种处理方式:
1)若已有航迹存在,通过各雷达关联算法进行航迹关联,将 PointNow中的点迹分别与当前存在航迹进行关联,当矩阵PointNow中的点迹与航 迹关联上后,更新航迹,若航迹未与当前所有点迹关联上,则未关联上的航迹启动 航迹补点程序,当补点次数达到4次后,启动航迹删除程序,将此航迹删除,更新航迹信息。若此时暂存点矩阵TemPoint不为空时,将暂存点与未关联上的目标点 迹进行航迹起始后更新航迹信息。其它未用到的点迹则直接放入暂存点矩阵 Tem Point中用于下一次的航迹起始。
2)若无航迹存在时,并且暂存点矩阵TemPoint 不为空,则先利用TemPoint中暂存点迹与PointNow中探测点迹进行航迹起始后 更新航迹,未用到的点迹再放入暂存点矩阵TemPoint中用于下一次的航迹起始。 当暂存点矩阵TemPoint为空时,直接令Tem Point等于PointNow,用作下一次的 航迹起始点迹。