FPGA的卷积神经网络异构加速器论文【附设计】

✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。


一、卷积神经网络(CNN)及其异构加速器综述

卷积神经网络(CNN)在图像分类、目标检测等领域取得了显著的成果。然而,CNN的计算复杂度高,尤其是卷积操作需要大量的乘加运算,因此在嵌入式和边缘设备上运行CNN具有挑战性。异构加速器通过结合FPGA的并行处理能力,可以大幅提高CNN的计算效率。

1. CNN的基本模型和计算原理

CNN由卷积层、池化层和全连接层等组成。卷积层是核心计算模块,利用卷积核对输入特征图进行滑动卷积操作,提取图像的局部特征。池化层通过降采样减小特征图的尺寸,减少计算量。全连接层对提取的特征进行分类。CNN的前向传播机制具有高度的并行性,适合在FPGA上进行加速。

2. 异构加速器开发平台与工具

本文选择了HLS(High-Level Synthesis)高层次开发工具和ZedBoard异构开发平台进行设计。HLS工具可以将高级编程语言(如C/C++)编写的算法转换为硬件描述语言(HDL),简化了硬件设计流程。ZedBoard基于Xilinx Zynq-7000 SoC,集成了ARM处理器和FPGA,可实现软硬件协同加速。

3. 加速器设计的理论基础

以LeNet-5模型为目标算法,对神经网络的前向传播机制进行分析。LeNet-5包含卷积、池化和全连接层,在前向传播中,卷积运算是最主要的计算部分。通过剖析CNN的内部运算并行性,设计了异构加速器的数据传输流程和软硬件资源分配方案,为后续加速器架构设计提供理论基础。

二、CNN异构加速器设计

设计了包含异构加速器IP核和片上嵌入式系统的整体架构,实现了在边缘设备上高效运行CNN的异构加速器。该设计主要从参数动态定点量化、快速卷积算法和并行性优化策略三个方面进行。

1. 参数动态定点量化

CNN模型中的权重和激活值通常为浮点数,占用大量存储空间。为了降低存储需求和计算复杂度,采用动态定点量化的方法:

  • 动态定点量化:根据参数的实际分布范围,动态调整数据的量化位宽。首先统计参数的最大值和最小值,然后根据这些统计信息确定定点量化的缩放因子,确保在保持精度的同时减少存储空间。
  • 硬件实现:在FPGA上,设计了动态定点量化模块,对输入数据进行定点化处理。在卷积运算中,采用定点数代替浮点数进行运算,降低了乘法器的复杂度,提高了计算效率。
2. 快速卷积算法

卷积运算是CNN中计算量最大的部分。为了提高卷积运算的速度,本文采用了基于Winograd变换的快速卷积算法。

  • Winograd卷积:通过数学变换,将卷积操作转化为矩阵乘法。对于常见的3×3卷积核,Winograd算法可以减少卷积计算中的乘法次数。具体来说,Winograd算法将卷积核和输入数据进行预处理,再通过矩阵乘法计算输出特征图,最后进行逆变换得到结果。
  • 硬件实现:在FPGA上实现Winograd卷积,设计专用的矩阵乘法器阵列,以流水线方式进行卷积计算,减少卷积操作的计算延迟。
3. 并行性优化策略

CNN具有高度的并行性,可以充分利用FPGA的并行计算能力。本文对卷积、池化和全连接运算进行了并行性优化:

  • 卷积层优化:采用循环展开和流水线技术,将卷积核的滑动窗口操作展开成并行计算。通过数据流优化,将输入数据和权重存储在片上RAM中,减少外部存储器的访问次数,提高卷积计算的吞吐量。
  • 池化层优化:池化操作相对简单,但可以通过并行计算加速。在FPGA中,对池化窗口的每个元素进行并行比较,快速得到最大值或平均值。
  • 全连接层优化:全连接层可以视为矩阵乘法。设计矩阵乘法加速器,利用FPGA的乘法器资源,将矩阵乘法操作展开为并行的乘加运算,提升计算效率。

三、片上嵌入式系统设计

为实现CNN加速器在嵌入式系统中的应用,本文在ZedBoard上设计了软硬件协同的嵌入式系统。

1. 底层驱动开发

利用软件开发工具编写CNN加速系统的底层驱动程序,包括数据传输、IP核控制等。驱动程序负责将CNN模型的输入数据传输到FPGA上的加速器IP核中,并从加速器中获取运算结果。

2. CNN模型映射

完成从CNN模型到ZYNQ加速器的映射流程。通过HLS工具,将CNN模型的各个层级运算映射到FPGA加速器上,实现模型在硬件上的高效运行。利用ZedBoard的异构架构,将计算任务分配给FPGA和ARM处理器,合理利用软硬件资源。

  • 软硬件资源划分:将计算密集的卷积、池化和全连接运算卸载到FPGA上执行,减少ARM处理器的计算负担。ARM处理器主要负责数据预处理、加速器控制和结果后处理。
  • 推理时间缩短:通过软硬件协同工作,显著缩短了CNN的推理时间,提高了系统的整体性能。

四、系统性能评估与实验结果

通过在ZedBoard上部署设计的CNN异构加速器,对系统性能进行了评估。

1. 检测精度和稳定性

在LeNet-5模型上进行测试,验证了异构加速器的准确性。通过参数动态定点量化,保持了CNN模型的检测精度,且系统在不同输入数据和运行条件下表现出较高的稳定性。

2. 加速性能

在使用Winograd卷积和并行性优化策略后,系统的计算效率得到大幅提升。测试结果显示,FPGA加速器相比纯软件实现,卷积运算速度提高了数十倍,实现了实时推理。

3. 资源利用率

通过资源分配和优化,FPGA上的逻辑单元、DSP、BRAM等硬件资源得到有效利用。资源利用率在可接受范围内,同时保证了系统的稳定性和性能。

module winograd_conv2d (
    input wire clk,
    input wire rst_n,
    input wire [15:0] input_data [0:3][0:3], // 输入4x4块数据
    input wire [15:0] kernel [0:2][0:2],     // 3x3卷积核
    output reg [15:0] output_data [0:2][0:2] // 输出2x2块数据
);
    // 中间变量
    reg [15:0] g[0:2][0:2];  // 卷积核
    reg [15:0] d[0:3][0:3];  // 输入数据
    reg [15:0] U[0:3][0:3];  // 转换后的卷积核
    reg [15:0] V[0:3][0:3];  // 转换后的输入数据
    reg [15:0] M[0:3][0:3];  // Winograd卷积结果
    integer i, j;

    // 卷积核转换
    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            for (i = 0; i < 3; i = i + 1) begin
                for (j = 0; j < 3; j = j + 1) begin
                    g[i][j] <= 0;
                end
            end
        end else begin
            // 卷积核预处理
            U[0][0] <= g[0][0];
            U[0][1] <= (g[0][0] + g[0][1] + g[0][2]) / 2;
            // 其他U矩阵元素的计算
            // ...
        end
    end

    // 输入数据转换
    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            for (i = 0; i < 4; i = i + 1) begin
                for (j = 0; j < 4; j = j + 1) begin
                    d[i][j] <= 0;
                end
            end
        end else begin
            // 输入数据预处理
            V[0][0] <= d[0][0];
            V[0][1] <= (d[0][0] - d[0][2]) / 2;
            // 其他V矩阵元素的计算
  
        end
    end

    // Winograd卷积计算
    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            for (i = 0; i < 4; i = i + 1) begin
                for (j = 0; j < 4; j = j + 1) begin
                    M[i][j] <= 0;
                end
            end
        end else begin
            // M = U * V
            for (i = 0; i < 4; i = i + 1) begin
                for (j = 0; j < 4; j = j + 1) begin
                    M[i][j] <= U[i][j] * V[i][j];
                end
            end
        end
    end

    // 输出结果转换
    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            for (i = 0; i < 2; i = i + 1) begin
                for (j = 0; j < 2; j = j + 1) begin
                    output_data[i][j] <= 0;
                end
            end
        end else begin
            // 转换结果
            output_data[0][0] <= M[0][0] + M[0][1] + M[1][0] + M[1][1];
            // 其他输出矩阵元素的计算
            // ...
        end
    end
endmodule

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值