✅博主简介:本人擅长建模仿真、数据分析、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
证件照使用场景广泛,市场需求大。然而,实体店拍摄的证件照存在质量参差不齐、个性化不足、便捷性不够以及成本相对较高等问题。同时,新冠疫情的发生客观上推动了用户对线上服务的需求,促使证件照相关的实体店开展线上服务。在此背景下,证件照在线服务具有重要的现实意义和较高的经济价值。
二、深度学习算法相关方法
-
人脸检测模块
- 用于确定人脸的位置,通过对输入的人像照片进行分析,准确找到人脸所在区域。
- 根据人脸位置完成图片的裁剪,进而生成相应尺寸的证件照,确保证件照符合标准规格。
-
半身人像抠图模块
- 提出基于 DIM 和 U2-Net 的半身人像抠图方法 DIM-U2,解决了 DIM 网络需要三分图辅助才能抠图的问题。
- 整理了一个包含 550 张半身人像的数据集,图片均经过细致抠图,保证人像头发边缘精度。
- 将这些图片与不同背景图片进行复合生成训练集,对模型进行优化,有效提升了模型输出精度。
-
人脸美颜模块
- 主要对脸部实现美白和祛斑效果,提升证件照中人物的外观形象。
- 通过深度学习算法识别脸部特征,针对性地进行肤色调整和斑点去除,使人物看起来更加美观自然。
-
半身人像换装模块
- 实现人像普通服装换成正式服装,满足不同用户在不同场景下对证件照服装的要求。
- 利用深度学习技术,准确识别半身人像中的服装区域,并将其替换为正式服装样式,增强证件照的规范性和专业性。
三、证件照应用平台设计
-
平台架构
- 实现了一个 1+N+M+X 的证件照应用平台,即 1 个平台应用端,N 个商户同时使用的商户端,M 种小程序接入方式,X 个终端用户。
- 以软件即服务的理念,通过互联网连接商家和用户,为商家提供便捷的服务平台,提升服务能力和水平,同时满足用户对证件照的多样化需求。
-
平台功能
- 商家可以通过商户端管理订单、提供个性化服务、与用户进行沟通等。
- 用户可以通过平台应用端或小程序接入方式上传照片、选择证件照类型、进行美颜和换装等操作,最终获得满意的证件照。
-
import cv2 import numpy as np def detect_face(image): # 这里使用简单的 OpenCV 人脸检测方法 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) return faces # 模拟图片裁剪函数 def crop_image(image, face): x, y, w, h = face return image[y:y + h, x:x + w] def beautify_face(image): for y in range(image.shape[0]): for x in range(image.shape[1]): b, g, r = image[y, x] if r > 150 and g > 150 and b > 150: image[y, x] = [min(255, b + 30), min(255, g + 30), min(255, r + 30)] return image # 测试代码 image = cv2.imread('input_image.jpg') faces = detect_face(image) if len(faces) > 0: cropped_image = crop_image(image, faces[0]) beautified_image = beautify_face(cropped_image) cv2.imwrite('output_image.jpg', beautified_image) else: print("No face detected.")