✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 历史数据预处理与特征变量选择
短期电力负荷预测依赖于大量的历史数据,合理选择并处理这些历史数据对模型的预测精度至关重要。为了保证输入数据的完整性和有效性,本文首先采用填补和修正的方法来处理数据中的缺失值和异常值。缺失值的存在可能会导致模型无法正常训练,而异常值则可能会对模型的预测产生较大偏差,因此需要对这些数据进行修复与处理。针对这些问题,本文对缺失值使用了插值法进行填补,对异常值则通过均值修正的方法加以修复,从而保证了数据的一致性和合理性。
在完成数据的修复后,本文采用皮尔逊相关系数法对数据中的各个变量进行相关性分析,找出与电力负荷变化密切相关的特征变量。结果显示,温度、湿度、风向等气象因素与电力负荷之间具有较高的相关性,因此被选定为负荷预测的主要影响因素。选择合适的特征变量不仅能够降低模型的复杂度,还能提高模型的预测精度。随后,本文对历史数据进行了归一化处理,使得数据分布在相同的数值范围内,以加速模型的收敛并提高训练效果。最后,将数据划分为训练集和测试集,保证模型在不同的数据集上能够得到充分的训练和合理的测试,这为后续的模型搭建和预测奠定了坚实的数据基础。
(2) LSTM超参数优化与POA优化算法的引入
长短期记忆神经网络(LSTM)是短期电力负荷预测中广泛应用的一种深度学习模型,但其预测效果在很大程度上依赖于模型的超参数选取,诸如学习率、隐藏层数目、节点数目等参数都会对LSTM模型的预测精度产生显著影响。传统的参数选择方法通常依赖于人工经验,这种方式不仅费时费力,还可能因人为经验的差异导致模型效果不佳。为了解决这一问题,本文引入了鹈鹕优化算法(Pelican Optimization Algorithm, POA)对LSTM的超参数进行优化。POA是一种新兴的智能优化算法,受鹈鹕捕食行为的启发,能够有效地在参数空间中进行全局搜索和优化。
通过POA对LSTM的超参数进行优化,可以避免人工选择参数的主观性,从而提高模型的预测效果。在具体实现中,POA算法通过模拟鹈鹕在捕食过程中的多次尝试,不断调整LSTM模型的超参数组合,最终找到使模型预测误差最小的最优参数。为了验证POA在参数寻优方面的优越性,本文采用误差评价指标对优化后的LSTM模型与未经优化的模型进行了对比分析。结果表明,POA-LSTM组合模型在预测精度和收敛速度上均有显著提升,相比于传统的人工经验调参,POA算法不仅提高了效率,还增强了模型的稳定性。通过这样的优化,构建了基于LSTM-POA的短期电力负荷预测组合模型,这一模型在训练和预测过程中表现出了良好的适应性和泛化能力。
(3) 基于VMD的负荷数据分解与组合模型构建
在短期电力负荷预测中,负荷数据通常具有非平稳、非线性以及较强的随机波动性,这些特性会对模型的预测精度产生不利影响。为了减小这些特性对负荷预测的影响,本文引入了变分模态分解算法(Variational Mode Decomposition, VMD),将原始负荷数据按中心频率从高到低分解成若干个带宽有限的子序列,以便提取数据的局部特征并剔除噪声污染。与传统的经验模态分解算法(Empirical Mode Decomposition, EMD)相比,VMD在模态混叠问题上具有显著的优势,能够更精确地分离信号中的不同模态成分,从而提高数据的处理质量。
在使用VMD对负荷数据进行分解后,本文结合LSTM-POA模型对各个子序列进行预测,并将预测结果进行重构,从而得到最终的负荷预测结果。通过这种方式,可以有效提取负荷数据中的不同频段特征,减小噪声对模型的干扰,提高预测的准确性。在模型构建中,VMD的作用是将复杂的负荷信号分解成若干相对简单的子信号,LSTM-POA组合模型则负责对这些子信号进行逐一预测,从而保证最终预测结果的高精度和低误差。实验结果显示,基于VMD-LSTM-POA的短期负荷预测组合模型在预测精度方面表现优异,尤其在负荷数据的拐点和极值处,其曲线拟合程度显著优于其他对比模型,体现了在处理复杂信号时的优势。
为验证本文所提出的组合模型的有效性和实用性,基于电网的实际数据进行了实验研究。实验中,将LSTM、VMD-LSTM、LSTM-POA模型与VMD-LSTM-POA模型的预测结果进行对比分析。结果表明,VMD-LSTM-POA组合模型在预测精度、抗噪能力以及对负荷突变点的敏感性等方面均优于其他模型。尤其是在电力负荷剧烈波动或发生极端变化的情况下,该组合模型的表现更为稳定,能够更好地跟踪负荷变化趋势并作出准确预测。因此,VMD-LSTM-POA组合模型为短期电力负荷预测提供了一种有效的解决方案,具有较高的实际应用价值,可推广应用于电网调度、智能电力系统等领域。
% 初始化LSTM参数和POA优化算法
function [best_params] = pelican_optimize_LSTM(data, target, num_pelicans, max_iter)
% 参数初始化
alpha = 0.5; % 控制参数更新步长
beta = 1.0; % 最大吸引度
best_params = [0, 0, 0]; % 初始化最佳参数(学习率、隐藏层节点数、批次大小)
best_fitness = inf;
% 随机初始化鹈鹕位置
pelicans = rand(num_pelicans, 3); % 三个参数
% 迭代优化
for iter = 1:max_iter
for i = 1:num_pelicans
% 计算适应度(均方误差)
params = pelicans(i, :);
learning_rate = params(1);
hidden_units = round(params(2) * 100); % 节点数量
batch_size = round(params(3) * 50) + 1; % 批次大小
% 使用LSTM模型进行预测
fitness = LSTM_fitness(data, target, learning_rate, hidden_units, batch_size);
% 更新最佳参数
if fitness < best_fitness
best_fitness = fitness;
best_params = params;
end
end
% 更新鹈鹕的位置
for i = 1:num_pelicans
for j = 1:num_pelicans
if fitness(i) > fitness(j)
% 位置更新
pelicans(i, :) = pelicans(i, :) + beta * exp(-alpha * norm(pelicans(i, :) - pelicans(j, :))^2) * (pelicans(j, :) - pelicans(i, :)) + alpha * (rand - 0.5);
end
end
end
end
end
% LSTM模型的适应度计算函数
function fitness = LSTM_fitness(data, target, learning_rate, hidden_units, batch_size)
% 创建并训练LSTM模型
layers = [ ...
sequenceInputLayer(size(data, 2))
lstmLayer(hidden_units, 'OutputMode', 'sequence')
fullyConnectedLayer(1)
regressionLayer];
% 训练选项
options = trainingOptions('adam', ...
'InitialLearnRate', learning_rate, ...
'MaxEpochs', 50, ...
'MiniBatchSize', batch_size, ...
'Verbose', false);
% 拟合训练
net = trainNetwork(data, target, layers, options);
% 计算预测误差
predictions = predict(net, data);
fitness = mean((predictions - target).^2); % 均方误差
end
% 主函数,调用POA优化LSTM
data = randn(1000, 5); % 输入数据(1000个样本,5个特征)
target = randn(1000, 1); % 目标值
num_pelicans = 20; % 鹈鹕数量
max_iter = 50; % 最大迭代次数
best_params = pelican_optimize_LSTM(data, target, num_pelicans, max_iter);
fprintf('最佳参数:学习率 = %.4f, 隐藏层节点数 = %d, 批次大小 = %d\n', best_params(1), round(best_params(2) * 100), round(best_params(3) * 50) + 1);