✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
-
特征自适应融合机制与金字塔特征的关系研究 本文首先研究了特征自适应融合机制与金字塔不同尺度特征之间的关系。提出了一种基于注意力机制的去雾算法,该算法通过分配不同尺度特征权重,结合横向连接和特征自适应融合机制,将不同层提取的特征信息进行有效融合。通过调整参数,增强了对高频信息和细节信息的权重,从而提升了去雾后图像的细节完善度和网络的去雾效率。
-
特征金字塔网络的轻量化设计 针对模型复杂度导致的去雾性能降低问题,本文对特征金字塔网络进行了轻量化设计。改进了注意力机制与特征金字塔模型相结合的网络结构,将注意力机制引入特征融合阶段,取代了原有的特征自适应融合模块。这种改进在保持去雾性能的同时,有效降低了模型的参数量。
-
基于对比学习的特征金字塔网络优化模型 本文提出了一种基于对比学习的特征金字塔网络优化模型。该模型通过对比学习的方式,将模糊图像和清晰图像共同用于指导去雾网络的训练。这种方法使得经过去雾网络恢复后的图像信息更接近清晰图像,同时远离模糊图像信息,从而在不增加模型复杂度的情况下,使去雾后的图像保留了更多的细节信息,增强了网络的去雾性能
% 基于特征金字塔网络的轻量化图像去雾算法模拟代码
% 初始化参数
imageSize = [256, 256]; % 图像尺寸
numChannels = 3; % 图像通道数
numFeatures = 64; % 特征数量
% 加载模糊图像
hazyImage = imread('hazy_image.jpg');
hazyImage = imresize(hazyImage, imageSize);
% 定义特征金字塔网络结构
layers = [
imageInputLayer([imageSize, numChannels], 'Name', 'input')
convolution2dLayer(3, numFeatures, 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
% ... 添加更多层以构建完整的特征金字塔网络结构
];
% 创建特征金字塔网络
lgraph = layerGraph(layers);
% 加载预训练模型参数
load('pretrained_model.mat', 'weights');
% 定义损失函数和优化器
lossFunction = meanSquaredError('Name', 'mse');
optimizer = adam('Name', 'adam');
% 训练网络
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.001, ...
'MaxEpochs',10, ...
'MiniBatchSize',16, ...
'Shuffle','every-epoch', ...
'Verbose',false, ...
'Plots','training-progress');
% 训练去雾模型
[trainedNet, info] = trainNetwork(hazyImage, clearImage, lgraph, options);
% 使用训练好的网络进行去雾
dehazedImage = predict(trainedNet, hazyImage);
% 显示去雾结果
figure;
subplot(1,2,1);
imshow(hazyImage);
title('Hazy Image');
subplot(1,2,2);
imshow(dehazedImage);
title('Dehazed Image');
% 保存去雾后的图像
imwrite(dehazedImage, 'dehazed_image.jpg');