基于深度强化学习的配电网无功-电压优化与可再生能源接入研究【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)新能源逆变器参与的配电网多智能体无功-电压控制方法

在配电网中,新能源和负荷的不确定性导致电压波动问题日益严重,而精确模型参数的获取往往较为困难。针对这一挑战,本文提出了一种考虑新能源逆变器参与的配电网多智能体无功-电压控制方法。该方法基于强化学习理论,将无功-电压优化问题转化为马尔可夫博弈问题,并采用深度确定性策略梯度算法进行求解。这一方法依托于数据驱动,不依赖于配电网的精确潮流建模和源荷预测,而是根据配电网的实时状态信息观测数据进行决策。同时,该方法结合了多智能体强化学习集中训练和分散执行的框架,调控单元的决策仅基于电网状态信息获取与神经网络前馈运算,具有较好的实时性能

(2)基于样本效率优化的数据驱动型配电网有功无功协调控制策略

当前数据驱动方法在配电网有功无功协调控制中面临样本需求量大、数据利用效率不高的问题。本文提出了一种基于样本效率优化的数据驱动型配电网有功无功协调控制策略。首先,基于出行链预测方法获取电动汽车充电桩的充电功率曲线,然后结合新能源逆变器等无功调节设备,建立配电网有功无功协调实时优化的马尔科夫博弈过程。其次,提出了强化学习经验增强方法,并结合注意力机制提出一种新型的多智能体深度强化学习算法,有效缓解了多数强化学习方法经验采样效率低、数据样本需求量大的问题,提高了控制效果,并增强了数据驱动方法在电压优化问题中的实用性

(3)基于云边协同架构的配电网无功-电压就地控制框架

针对配电网集中式调控问题维数高、实时性不足的问题,本文提出了一种基于云边协同架构的配电网无功-电压就地控制框架,并在此框架下建立了分区两阶段的无功-电压优化模型。首先,提出基于电压灵敏度的多场景层次聚类配电网分区方法,应对源荷不确定性对静态分区准确性的挑战,实现电压各区域内电压关系解耦,作为分区就地控制的基础。接着,利用基于数学模型的方法求解慢时间尺度的日前调控问题,并基于多智能体强化学习方法完成实时日内调度。该方法以边缘计算装置作为区域控制主体,决策时各子区域只需自主观测相应区域内的状态信息,无需全局信息获取及云端通信,有效降低了智能体的动作和观测维度且具有更好的实时性能

(4)基于图强化学习方法的配电网电压分布式实时控制方法

针对分区就地控制缺乏交互难以应对配电网结构状态变化、全局最优性不足且依赖于分区精度的问题,本文提出了基于图强化学习方法的配电网电压分布式实时控制方法。首先结合边边协同的架构提出配电网分布式电压区域自治控制框架,并建立部分可观测马尔可夫博弈过程。该过程属于强化学习领域部分可观测问题,且涉及相邻区域之间数据共享弱通信。因此,提出了一种基于分散训练、分散决策框架与分层图形循环网络的多智能体强化学习方法。该方法允许相邻区域智能体共享状态观测数据,并赋予了各智能体分布式决策能力。各区域只需依据自身状态数据并与相邻区域通信即可实现区域电压控制并优化配电网全局网损,实现区域分布式自治且无需复杂的通信

 

 
# 假设这是一个用于配电网无功-电压控制的简化代码示例
def voltage_control_strategy(voltage_measurements, reactive_power_devices):
    """
    配电网无功-电压控制策略
    :param voltage_measurements: 电压测量值
    :param reactive_power_devices: 无功调节设备状态
    :return: 控制信号
    """
    # 基于电压测量值和无功调节设备状态计算控制信号
    control_signal = calculate_control_signal(voltage_measurements, reactive_power_devices)
    return control_signal

def calculate_control_signal(voltage_measurements, reactive_power_devices):
    """
    计算控制信号
    :param voltage_measurements: 电压测量值
    :param reactive_power_devices: 无功调节设备状态
    :return: 计算得到的控制信号
    """
    # 这里只是一个示例逻辑,实际应用中需要根据具体模型和算法进行计算
    control_signal = sum(voltage_measurements) / len(voltage_measurements) - 0.7 * sum(reactive_power_devices)
    return control_signal

# 电压测量值和无功调节设备状态示例
voltage_measurements = [1.05, 0.95, 1.02]  # 电压测量值
reactive_power_devices = [0.2, 0.3, 0.1]  # 无功调节设备状态

# 调用无功-电压控制策略函数
control_action = voltage_control_strategy(voltage_measurements, reactive_power_devices)
print(f"Control Action: {control_action}")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值