✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
1. 车辆规范化全局优化能量管理控制架构的搭建
本文建立了“信息-物质-能量”规范化车辆全局优化能量管理控制架构。该架构将车辆能量管理问题视为一个最优控制问题,基于可利用的全局工况信息,充分利用车辆动力系统的特性,产生全局最优能量耗散的过程。具体研究内容如下:
-
车辆能量管理三要素:
- 工况信息:包括车辆行驶路径、速度、加速度、道路坡度等信息,这些信息是实现全局优化能量管理的基础。
- 车辆构型:指车辆的动力系统构型,包括发动机、电动机、电池等部件的配置和参数。
- 能量耗散:指车辆在行驶过程中能量的消耗和转换,包括燃油消耗、电能消耗、动能转换等。
-
信息交互节能机理:
- 贝尔曼最优原理:以贝尔曼最优原理为核心,揭示了信息交互条件下车辆全局优化能量管理的节能机理。贝尔曼最优原理指出,在每个决策点上,选择使总成本最小的决策,可以实现全局最优控制。
- 信息交互:通过车联网、智能交通系统等技术,实现车辆与外界信息的实时交互,提高能量管理的精确性和实时性。
-
控制架构规范:
- 规范化流程:该架构规范了车辆全局优化能量管理控制流程,包括数据采集、信息处理、优化计算、控制执行等环节,确保不同车辆构型下的全局优化能量管理系统具有通用性和可扩展性。
- 避免重复研究:通过规范化架构,避免了对不同车辆构型下全局优化能量管理系统的重复性个案研究,提高了研究效率和实用性。
2. 基于信息熵的随机工况信息不确定度的定量计算方法
本文提出了基于信息熵的随机工况信息不确定度的定量计算方法,确保了随机工况信息不确定度的可测性,为研究全局优化能量管理所需工况信息量与整车节能潜力的关系提供了理论基础。
-
全因素约束工况信息模型:
- 独立性:各因素间的独立性确保了各约束所量化信息熵的可加性,避免了冗余信息引入导致的算法计算量增加和通讯物流网卡数据流量成本的增加。
- 信息熵计算:对于约束型工况信息,基于随机变量的信息熵、条件熵、联合熵和最大熵原理,定量计算各工况信息的信息熵。
- 历史数据型工况信息:将速度预测、路径选择建模为具有平稳分布的马尔可夫链,利用随机过程的熵率衡量信息不确定度。
-
冗余信息减少:
- 实车场景:在实车不同行驶场景下,举例说明全因素约束模型相对非独立约束模型所降低的冗余信息量。例如,在城市拥堵路段,通过全因素约束模型,可以减少不必要的速度预测和路径选择信息,提高数据传输效率。
-
信息熵的应用:
- 数据获取:通过信息熵计算,确定所需工况信息的最小量,减少数据采集和传输的成本。
- 数据融合:在车联网环境下,通过信息熵计算,实现不同来源数据的有效融合,提高数据的准确性和可靠性。
3. 车辆可行工作模式集合及经济性评价指标的确定方法
本文提出了“动/势能-车载能量”能量守恒框架,以确定可行域内任意两可达状态转移对应的车辆可行工作模式,并建立了合理的经济性评价体系。
-
能量守恒框架:
- 外部因素:包括机械能、动/势能、车速等,这些因素反映了车辆行驶过程中的能量转换和消耗。
- 内部因素:包括电池荷电状态、发动机工作状态等,这些因素反映了车辆内部能量的存储和转换。
- 附加因素:包括滑行条件、功率对比等,这些因素反映了车辆在特定工况下的特殊需求。
-
可行工作模式:
- 状态转移:通过合理组合外部因素、内部因素和附加因素,生成各触发条件,确定对应的车辆动力系统可控部件的唯一工作模式,实现工况信息与工作模式对应关系的数理分析。
- 经济性评价:以DP策略为基准,提出综合性能指标、瞬态性能指标、辨识因子等评价指标,合理评估车辆动力系统对全局工况信息的利用程度。例如,综合性能指标可以反映车辆在不同工况下的整体节能效果,瞬态性能指标可以反映车辆在瞬态工况下的响应速度和稳定性。
-
案例分析:
- 不同工况:通过不同工况下的案例分析,验证了所提出的可行工作模式集合和经济性评价指标的有效性。例如,在高速公路上,通过优化车辆的工作模式,可以显著降低燃油消耗和电能消耗,提高整车的经济性。
4. 开发基于工况特征的快速动态规划能量管理控制方法
本文提出了基于工况特征的快速动态规划(DP)能量管理控制方法,提高了全局优化算法的计算效率,实现了在线应用。
-
全局最优域搜索算法:
- 最优状态轨迹域:基于最优状态点集呈现的“域化现象”,提出全局最优域搜索算法,以最优(次优)状态轨迹域的形式输出可行域内所有的最优(次优)状态点。
- 驾驶性能约束:优化求解过程中,引入驾驶性能约束,避免发动机频繁起停、瞬态转矩变化过大以及频繁换挡等问题,确保车辆在优化能量管理的同时,保持良好的驾驶性能。
-
快速DP算法:
- 统计规律:基于不同工况特征下最优状态轨迹域、次优状态轨迹域、参考SOC轨迹三者之间的统计规律,提出基于工况特征的快速DP算法。
- 计算效率:该算法在保证全局最优控制精度的前提下,计算负荷相比于传统DP策略可降低85%以上,显著提高了算法的计算效率。
-
实际应用:
- 不同驾驶场景:在不同驾驶场景下,分析道路坡度信息和驾驶性能约束引入对全局能量管理的影响,提高策略的实际应用性。例如,在山区道路上,通过引入道路坡度信息,可以优化车辆的能量分配,提高整车的经济性和驾驶性能。
5. 开发基于ADHDP的数据驱动能量管理控制方法
本文提出了基于自适应动态规划(ADHDP)的数据驱动能量管理控制方法,实现了车辆全局优化能量管理的在线应用。
-
ADHDP模型:
- 成本函数和控制策略:利用神经网络近似DP方程中的成本函数和控制策略,进而基于值迭代或策略迭代来近似求解。
- 模型结构:包括效用函数、动作网络、评价网络和训练流程,确保模型能够有效逼近全局最优解。
-
仿真验证:
- 不同驾驶场景:完成不同驾驶场景下ADHDP策略的仿真验证,结果表明所提策略具有近似最优性、工况自适应性和算法实时性,所提策略可发挥离线DP策略节能潜力的93%以上。
- 实际应用:通过实车测试,验证了ADHDP策略在实际驾驶场景中的有效性和可靠性,为多能量源车辆的全局优化能量管理系统的开发提供了技术支持。
import numpy as np
import matplotlib.pyplot as plt
# 定义系统参数
battery_capacity = 100 # 电池容量 (kWh)
initial_soc = 0.8 # 初始荷电状态
max_power = 100 # 最大功率 (kW)
min_power = 0 # 最小功率 (kW)
time_step = 1 # 时间步长 (s)
total_time = 600 # 总时间 (s)
# 工况信息
speed_profile = np.random.uniform(0, 100, total_time // time_step) # 随机速度剖面 (km/h)
road_slope = np.random.uniform(-0.05, 0.05, total_time // time_step) # 随机道路坡度
# 能量管理策略
def energy_management(speed, slope, soc, battery_capacity, max_power, min_power, time_step):
# 计算需求功率
demand_power = (speed / 3.6) * (0.05 + slope) # 简化模型,假设需求功率与速度和坡度成正比
# 电池功率限制
battery_power = min(max(demand_power, min_power), max_power)
# 更新荷电状态
new_soc = soc + (battery_power * time_step / (3600 * battery_capacity))
return new_soc, battery_power
# 仿真
soc_history = [initial_soc]
power_history = []
for t in range(total_time // time_step):
current_speed = speed_profile[t]
current_slope = road_slope[t]
current_soc = soc_history[-1]
new_soc, power = energy_management(current_speed, current_slope, current_soc, battery_capacity, max_power, min_power, time_step)
soc_history.append(new_soc)
power_history.append(power)
# 绘制结果
plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
plt.plot(range(0, total_time, time_step), speed_profile, label='Speed Profile (km/h)', color='b')
plt.xlabel('Time (s)')
plt.ylabel('Speed (km/h)')
plt.title('Speed Profile')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(range(0, total_time, time_step), soc_history[:-1], label='State of Charge (SoC)', color='r')
plt.plot(range(0, total_time, time_step), power_history, label='Power (kW)', color='g')
plt.xlabel('Time (s)')
plt.ylabel('SoC / Power')
plt.title('State of Charge and Power Consumption')
plt.legend()
plt.tight_layout()
plt.show()