✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)多材料组装车轮设计方案与性能分析方法构建
汽车轻量化对于节能减排意义重大,车轮轻量化是整车轻量化的关键部分。随着多种高性能材料在车轮制造中的应用,多材料组装车轮应运而生,但由于其研发和应用涉及多方面复杂因素,尚未有系统设计流程,其结构设计、性能分析与优化匹配成为设计开发的关键与热点难点。
以 16×16.5J 型车轮为研究对象,提出了压铆连接铝 / 镁合金组装车轮和螺栓连接 CFRP / 铝合金组装车轮这两种具有代表性的设计方案。对于 CFRP 轮辋,提出 “三段对称堆叠式” 铺层结构,通过 Fiber Sim 软件建立铺层模型,并将信息输入有限元分析软件,建立 CFRP 轮辋有限元模型,再与铝合金轮辐螺栓连接,得到碳 / 铝组装车轮有限元模型。依据国家和行业标准,对碳 / 铝组装车轮进行弯曲疲劳、径向疲劳、13° 冲击和 90° 冲击性能仿真分析。通过这些分析,可以深入了解碳 / 铝组装车轮在不同工况下的疲劳和冲击损伤情况。这不仅能帮助确定 CFRP 轮辋需要加厚和减薄的区域,为后续优化设计提供方向,还能分析接头的承载和变形模式,为接头设计提供依据。这一系列工作为整个多材料组装车轮的研究奠定了基础,让我们对其在实际运行中可能面临的情况有了初步的认识和评估,从而为后续更深入的设计优化工作提供数据支持和理论依据。
在设计过程中,要充分考虑不同材料的特性和组合方式。例如,CFRP 具有高强度、低密度的特点,但与铝合金连接时,需要考虑连接的可靠性和应力分布。对于铝合金和镁合金,它们在力学性能和加工工艺上也有差异,在设计压铆接头时需要针对性地考虑这些因素。同时,在性能分析过程中,要全面考虑各种可能的工况,因为车轮在实际行驶中会面临复杂的受力情况,只有准确模拟这些工况,才能真实反映车轮的性能表现,从而为设计出高性能的多材料组装车轮提供保障。
(2)接头优化设计与车轮局部性能优化
在完成初步设计和性能分析后,需要对关键的接头部分进行深入优化。对于 CFRP / 铝合金螺栓接头,设计了准静态剪切、拉拔以及动态冲击的接头方案,并分析在不同工况下的损伤模式。在静态剪切和拉拔、正对螺栓冲击和正对 CFRP 板冲击等工况下,通过观察其损伤情况,提出采用最大剪切力、拉拔力和冲击力来评价螺栓接头的静、动态性能。选取包括 CFRP 和铝合金连接板的结构参数、连接螺栓的连接工艺参数、CFRP 板的铺层厚度 - 角度 - 顺序参数作为设计变量,同时以 CFRP 结构工程制造约束为优化约束条件,以螺栓接头的静、动态性能以及 CFRP 板的铺层数量为优化目标,结合 NSGA - II 多目标优化算法和 RBFNN 近似模型,对螺栓接头进行多目标匹配优化设计。通过这种复杂的优化过程,得到了 Pareto 解集,并采用 Entropy - TOPSIS 方法决策出最佳妥协解,从而确定出最优设计参数,为后续车轮整体优化提供了重要的基础。
对于铝 / 镁合金压铆接头,设计了单搭接和对接的试样,并建立了压铆 - 拉脱 / 剪切力学性能序列耦合仿真分析方法。通过这种方法,可以详细分析压铆接头的成形质量、拉脱和剪切力学性能。为了验证仿真模型的准确性,对比了仿真和试验得到的压铆形成头的尺寸、关键测点的相对干涉量以及干涉量均匀度、最大拉脱和剪切力以及拉脱和剪切工况下的接头损伤形式及位置。选取压铆接头的材料、结构和连接工艺参数为设计变量,以铆接形成头尺寸、最大拉脱和剪切力以及关联疲劳损伤的最大干涉量为优化目标,使用 Taguchi - PCA/FRST/Entropy - GRA 方法进行多目标匹配优化设计,并比较三种权重方法下的优化结果,确定最佳设计参数,为铝 / 镁组装车轮的设计和优化做好准备。
这些接头优化工作对于整个多材料组装车轮的性能提升至关重要。接头作为不同材料之间的连接部分,其性能直接影响车轮的整体可靠性和耐久性。通过精确的优化设计,可以使接头在不同工况下更好地传递力,减少应力集中和损伤的发生,从而提高车轮的使用寿命和安全性能。同时,针对不同材料组合的接头采用不同的优化方法,充分考虑了材料特性和连接方式的差异,使优化结果更具针对性和有效性。
(3)车轮整体结构 - 连接 - 性能一体化多目标优化与验证
在接头优化的基础上,进一步对车轮整体进行结构 - 连接 - 性能一体化多目标优化。对于压铆连接铝 / 镁组装车轮,根据压铆接头的优化设计参数确定初始设计方案,并提出了动态显式压铆 - 隐式回弹 - 隐式弯曲和径向疲劳强度 / 显式 13° 和 90° 冲击仿真分析方法,以此研究铝 / 镁组装车轮的疲劳和冲击性能,构建评价其性能的关键指标。选取铝 / 镁组装车轮的压铆连接工艺参数为设计变量,以考虑铆接残余应力的组装车轮的疲劳和冲击性能为优化目标,使用 Taguchi - AHP/PCA/Entropy - GRA 方法进行连接 - 性能多目标优化设计,比较不同权重方法下的优化结果确定最佳设计参数,并验证优化后的车轮疲劳和冲击性能满足标准要求。
对于碳 / 铝组装车轮,采用全局铺层和子区域铺层策略,提出 CFRP 轮辋结构的变厚度铺层设计方法,使用 “子区域铺层引导式剔除” 策略实现铺层厚度和顺序的耦合,将铺层厚度和铺层顺序同时作为设计变量,实现 CFRP 轮辋铺层角度 - 厚度 - 顺序的集成设计。选取铝合金轮辐和 CFRP 轮辋的结构参数、连接螺栓的工艺参数、CFRP 轮辋的铺层角度 - 厚度 - 顺序参数为设计变量,以碳 / 铝组装车轮的疲劳和冲击性能以及 CFRP 轮辋的铺层数量为优化目标,以变厚度 CFRP 结构工程制造约束为优化约束条件,结合 QRSM - RBFNN 组合近似模型和 NSGA - II 多目标优化算法,对碳 / 铝组装车轮进行结构 - 连接 - 性能一体化多目标优化设计,得到 Pareto 解集后使用 PCA - GRA 多目标决策方法筛选出最优妥协解,确定最终优化设计方案。对比分析优化前后碳 / 铝组装车轮的疲劳和冲击性能,验证一体化多目标优化设计的有效性。
最后,根据多目标一体化优化设计方案,使用 “热压罐 + 模压” 的成型工艺制造 CFRP 轮辋样件,在考虑电化学腐蚀防护条件下,与锻造铝合金轮辐通过钢制螺栓组装得到碳 / 铝组装车轮样件。按照国家和行业标准要求,对样件进行多种疲劳和冲击试验,试验结果表明碳 / 铝组装车轮的疲劳和冲击性能满足标准要求。进一步对比仿真分析结果与试验结果,验证仿真模型的准确性以及一体化多目标优化设计的有效性。通过这一系列的工作,完成了从接头到车轮整体的全面优化和验证,为多材料组装车轮的自主研发设计提供了可靠的技术参考和依据,有助于推动汽车轻量化车轮技术的发展,提高汽车的整体性能和节能减排效果。
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
# 假设这是一个简单的有限元分析类,用于模拟车轮结构
class FiniteElementAnalysis:
def __init__(self, mesh_size, material_properties):
self.mesh_size = mesh_size
self.material_properties = material_properties
self.displacements = np.zeros((len(mesh_size), 3)) # 存储节点位移
self.stresses = np.zeros((len(mesh_size), 6)) # 存储节点应力
# 生成有限元网格函数(简单示例)
def generate_mesh(self):
# 这里可以根据 mesh_size 生成网格节点坐标等信息
print("Generating finite element mesh...")
# 假设简单地返回一个均匀分布的节点坐标数组(实际会更复杂)
return np.random.rand(self.mesh_size[0], self.mesh_size[1], 3)
# 应用边界条件函数(简单示例)
def apply_boundary_conditions(self, mesh):
print("Applying boundary conditions...")
# 假设固定某些边界节点的位移(这里简单设置为0)
boundary_nodes = np.where((mesh[:, 0] == 0) | (mesh[:, 0] == self.mesh_size[0] - 1) |
(mesh[:, 1] == 0) | (mesh[:, 1] == self.mesh_size[1] - 1))
for node in boundary_nodes:
self.displacements[node] = [0, 0, 0]
# 计算刚度矩阵函数(简单示例)
def calculate_stiffness_matrix(self, mesh):
print("Calculating stiffness matrix...")
# 这里简单返回一个单位刚度矩阵(实际会根据材料和几何计算)
return np.eye(len(mesh))
# 求解位移函数(简单示例)
def solve_displacements(self, stiffness_matrix):
print("Solving for displacements...")
# 假设简单求解位移(实际会更复杂的线性方程组求解)
self.displacements = np.dot(np.linalg.inv(stiffness_matrix), np.zeros(len(stiffness_matrix)))
# 计算应力函数(简单示例)
def calculate_stresses(self):
print("Calculating stresses...")
# 这里简单根据位移计算应力(实际会更复杂的本构关系)
self.stresses = self.displacements * 2 # 假设简单关系
# 可视化结果函数(简单示例)
def visualize_results(self):
print("Visualizing results...")
plt.figure()
plt.plot(self.displacements[:, 0], label='Displacement in X')
plt.plot(self.displacements[:, 1], label='Displacement in Y')
plt.plot(self.displacements[:, 2], label='Displacement in Z')
plt.xlabel('Node Index')
plt.ylabel('Displacement')
plt.title('Displacement Results')
plt.legend()
plt.show()
# 示例用法
mesh_size_example = [10, 10] # 假设的网格尺寸
material_properties_example = {'Youngs_modulus': 200e9, 'Poissons_ratio': 0.3} # 假设的材料属性
fea = FiniteElementAnalysis(mesh_size_example, material_properties_example)
mesh = fea.generate_mesh()
fea.apply_boundary_conditions(mesh)
stiffness_matrix = fea.calculate_stiffness_matrix(mesh)
fea.solve_displacements(stiffness_matrix)
fea.calculate_stresses()
fea.visualize_results()
上述代码创建了一个简单的有限元分析类,用于模拟车轮结构的一些基本有限元分析步骤,包括网格生成、边界条件应用、刚度矩阵计算、位移求解、应力计算和结果可视化。在实际的多材料组装车轮研究中,需要根据实际的材料特性、几何形状和连接情况等对代码进行大量扩展和修改,以准确模拟车轮的力学行为。
python
复制
# 以下是继续添加的与优化算法相关的代码部分(以简单的遗传算法示例模拟优化过程)
# 导入必要的库
import random
# 假设这是一个简单的遗传算法优化类,用于优化车轮设计参数
class GeneticAlgorithmOptimization:
def __init__(self, population_size, num_generations, design_variables):
self.population_size = population_size
self.num_generations = num_generations
self.design_variables = design_variables
self.population = []
# 初始化种群函数
def initialize_population(self):
print("Initializing population...")
for _ in range(self.population_size):
individual = {}
for variable in self.design_variables:
if variable['type'] == 'continuous':
individual[variable['name']] = random.uniform(variable['lower_bound'], variable['upper_bound'])
elif variable['type'] == 'discrete':
individual[variable['name']] = random.choice(variable['options'])
self.population.append(individual)
# 评估适应度函数(这里简单返回一个随机适应度值,实际要根据车轮性能评估)
def evaluate_fitness(self, individual):
print("Evaluating fitness of an individual...")
return random.random()
# 选择操作函数(简单示例,采用轮盘赌选择)
def selection(self):
print("Performing selection...")
fitness_values = [self.evaluate_fitness(individual) for individual in self.population]
total_fitness = sum(fitness_values)
selection_probs = [fitness / total_fitness for fitness in fitness_values]
new_population = []
for _ in range(self.population_size):
random_number = random.random()
cumulative_prob = 0
for i in range(self.population_size):
cumulative_prob += selection_probs[i]
if cumulative_prob > random_number:
new_population.append(self.population[i])
break
self.population = new_population
# 交叉操作函数(简单示例,单点交叉)
def crossover(self):
print("Performing crossover...")
new_population = []
for i in range(0, self.population_size, 2):
parent1 = self.population[i]
parent2 = self.population[i + 1]
crossover_point = random.randint(1, len(self.design_variables) - 1)
child1 = {}
child2 = {}
for j in range(len(self.design_variables)):
if j < crossover_point:
child1[self.design_variables[j]['name']] = parent1[self.design_variables[j]['name']]
child2[self.design_variables[j]['name']] = parent2[self.design_variables[j]['name']]
else:
child1[self.design_variables[j]['name']] = parent2[self.design_variables[j]['name']]
child2[self.design_variables[j]['name']] = parent1[self.design_variables[j]['name']]
new_population.extend([child1, child2])
self.population = new_population
# 变异操作函数(简单示例,对连续变量进行小范围变异)
def mutation(self):
print("Performing mutation...")
for individual in self.population:
for variable in self.design_variables:
if variable['type'] == 'continuous':
if random.random() < 0.1: # 假设变异概率为0.1
individual[variable['name']] = random.uniform(variable['lower_bound'], variable['upper_bound'])
# 运行遗传算法优化函数
def run_optimization(self):
self.initialize_population()
for generation in range(self.num_generations):
print(f"Generation {generation + 1}")
self.selection()
self.crossover()
self.mutation()
best_individual = max(self.population, key=self.evaluate_fitness)
return best_individual
# 示例用法
population_size_example = 20
num_generations_example = 10
design_variables_example = [
{'name': 'thickness', 'type': 'continuous', 'lower_bound': 0.1, 'upper_bound': 1.0},
{'name': 'angle', 'type': 'continuous', 'lower_bound': 0, 'upper_bound': 90},
{'name': 'bolt_type', 'type': 'discrete', 'options': ['bolt1', 'bolt2', 'bolt3']}
]
ga_optimization = GeneticAlgorithmOptimization(population_size_example, num_generations_example, design_variables_example)
optimized_result = ga_optimization.run_optimization()
print("Optimized design parameters:", optimized_result)
这段代码实现了一个简单的遗传算法优化类,用于对车轮设计参数进行优化。在实际应用中,需要根据具体的优化目标和约束条件,结合车轮的实际性能评估方法,来准确地实现优化过程。例如,将适应度函数与车轮的疲劳寿命、冲击性能等指标相关联,以实现真正意义上的多材料组装车轮结构 - 连接 - 性能一体化多目标优化。
python
复制
# 以下是与试验数据处理相关的代码部分(简单示例)
# 假设这是一个处理试验数据的类,用于分析车轮试验结果
class TestDataProcessing:
def __init__(self, test_data):
self.test_data = test_data
# 数据清洗函数(简单示例,去除异常值)
def clean_data(self):
print("Cleaning test data...")
# 假设采用简单的3倍标准差法去除异常值(实际可能更复杂)
mean_data = np.mean(self.test_data, axis=0)
std_data = np.std(self.test_data, axis=0)
cleaned_data = []
for row in self.test_data:
if np.all(np.abs(row - mean_data) < 3 * std_data):
cleaned_data.append(row)
self.test_data = np.array(cleaned_data)
# 数据分析函数(简单示例,计算平均值和标准差)
def analyze_data(self):
print("Analyzing test data...")
mean_value = np.mean(self.test_data, axis=0)
std_value = np.std(self.test_data, axis=0)
return mean