组装车轮轻量化设计中的疲劳冲击分析与一体化设计研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)多材料组装车轮设计方案与性能分析方法构建

汽车轻量化对于节能减排意义重大,车轮轻量化是整车轻量化的关键部分。随着多种高性能材料在车轮制造中的应用,多材料组装车轮应运而生,但由于其研发和应用涉及多方面复杂因素,尚未有系统设计流程,其结构设计、性能分析与优化匹配成为设计开发的关键与热点难点。

以 16×16.5J 型车轮为研究对象,提出了压铆连接铝 / 镁合金组装车轮和螺栓连接 CFRP / 铝合金组装车轮这两种具有代表性的设计方案。对于 CFRP 轮辋,提出 “三段对称堆叠式” 铺层结构,通过 Fiber Sim 软件建立铺层模型,并将信息输入有限元分析软件,建立 CFRP 轮辋有限元模型,再与铝合金轮辐螺栓连接,得到碳 / 铝组装车轮有限元模型。依据国家和行业标准,对碳 / 铝组装车轮进行弯曲疲劳、径向疲劳、13° 冲击和 90° 冲击性能仿真分析。通过这些分析,可以深入了解碳 / 铝组装车轮在不同工况下的疲劳和冲击损伤情况。这不仅能帮助确定 CFRP 轮辋需要加厚和减薄的区域,为后续优化设计提供方向,还能分析接头的承载和变形模式,为接头设计提供依据。这一系列工作为整个多材料组装车轮的研究奠定了基础,让我们对其在实际运行中可能面临的情况有了初步的认识和评估,从而为后续更深入的设计优化工作提供数据支持和理论依据。

在设计过程中,要充分考虑不同材料的特性和组合方式。例如,CFRP 具有高强度、低密度的特点,但与铝合金连接时,需要考虑连接的可靠性和应力分布。对于铝合金和镁合金,它们在力学性能和加工工艺上也有差异,在设计压铆接头时需要针对性地考虑这些因素。同时,在性能分析过程中,要全面考虑各种可能的工况,因为车轮在实际行驶中会面临复杂的受力情况,只有准确模拟这些工况,才能真实反映车轮的性能表现,从而为设计出高性能的多材料组装车轮提供保障。

(2)接头优化设计与车轮局部性能优化

在完成初步设计和性能分析后,需要对关键的接头部分进行深入优化。对于 CFRP / 铝合金螺栓接头,设计了准静态剪切、拉拔以及动态冲击的接头方案,并分析在不同工况下的损伤模式。在静态剪切和拉拔、正对螺栓冲击和正对 CFRP 板冲击等工况下,通过观察其损伤情况,提出采用最大剪切力、拉拔力和冲击力来评价螺栓接头的静、动态性能。选取包括 CFRP 和铝合金连接板的结构参数、连接螺栓的连接工艺参数、CFRP 板的铺层厚度 - 角度 - 顺序参数作为设计变量,同时以 CFRP 结构工程制造约束为优化约束条件,以螺栓接头的静、动态性能以及 CFRP 板的铺层数量为优化目标,结合 NSGA - II 多目标优化算法和 RBFNN 近似模型,对螺栓接头进行多目标匹配优化设计。通过这种复杂的优化过程,得到了 Pareto 解集,并采用 Entropy - TOPSIS 方法决策出最佳妥协解,从而确定出最优设计参数,为后续车轮整体优化提供了重要的基础。

对于铝 / 镁合金压铆接头,设计了单搭接和对接的试样,并建立了压铆 - 拉脱 / 剪切力学性能序列耦合仿真分析方法。通过这种方法,可以详细分析压铆接头的成形质量、拉脱和剪切力学性能。为了验证仿真模型的准确性,对比了仿真和试验得到的压铆形成头的尺寸、关键测点的相对干涉量以及干涉量均匀度、最大拉脱和剪切力以及拉脱和剪切工况下的接头损伤形式及位置。选取压铆接头的材料、结构和连接工艺参数为设计变量,以铆接形成头尺寸、最大拉脱和剪切力以及关联疲劳损伤的最大干涉量为优化目标,使用 Taguchi - PCA/FRST/Entropy - GRA 方法进行多目标匹配优化设计,并比较三种权重方法下的优化结果,确定最佳设计参数,为铝 / 镁组装车轮的设计和优化做好准备。

这些接头优化工作对于整个多材料组装车轮的性能提升至关重要。接头作为不同材料之间的连接部分,其性能直接影响车轮的整体可靠性和耐久性。通过精确的优化设计,可以使接头在不同工况下更好地传递力,减少应力集中和损伤的发生,从而提高车轮的使用寿命和安全性能。同时,针对不同材料组合的接头采用不同的优化方法,充分考虑了材料特性和连接方式的差异,使优化结果更具针对性和有效性。

(3)车轮整体结构 - 连接 - 性能一体化多目标优化与验证

在接头优化的基础上,进一步对车轮整体进行结构 - 连接 - 性能一体化多目标优化。对于压铆连接铝 / 镁组装车轮,根据压铆接头的优化设计参数确定初始设计方案,并提出了动态显式压铆 - 隐式回弹 - 隐式弯曲和径向疲劳强度 / 显式 13° 和 90° 冲击仿真分析方法,以此研究铝 / 镁组装车轮的疲劳和冲击性能,构建评价其性能的关键指标。选取铝 / 镁组装车轮的压铆连接工艺参数为设计变量,以考虑铆接残余应力的组装车轮的疲劳和冲击性能为优化目标,使用 Taguchi - AHP/PCA/Entropy - GRA 方法进行连接 - 性能多目标优化设计,比较不同权重方法下的优化结果确定最佳设计参数,并验证优化后的车轮疲劳和冲击性能满足标准要求。

对于碳 / 铝组装车轮,采用全局铺层和子区域铺层策略,提出 CFRP 轮辋结构的变厚度铺层设计方法,使用 “子区域铺层引导式剔除” 策略实现铺层厚度和顺序的耦合,将铺层厚度和铺层顺序同时作为设计变量,实现 CFRP 轮辋铺层角度 - 厚度 - 顺序的集成设计。选取铝合金轮辐和 CFRP 轮辋的结构参数、连接螺栓的工艺参数、CFRP 轮辋的铺层角度 - 厚度 - 顺序参数为设计变量,以碳 / 铝组装车轮的疲劳和冲击性能以及 CFRP 轮辋的铺层数量为优化目标,以变厚度 CFRP 结构工程制造约束为优化约束条件,结合 QRSM - RBFNN 组合近似模型和 NSGA - II 多目标优化算法,对碳 / 铝组装车轮进行结构 - 连接 - 性能一体化多目标优化设计,得到 Pareto 解集后使用 PCA - GRA 多目标决策方法筛选出最优妥协解,确定最终优化设计方案。对比分析优化前后碳 / 铝组装车轮的疲劳和冲击性能,验证一体化多目标优化设计的有效性。

最后,根据多目标一体化优化设计方案,使用 “热压罐 + 模压” 的成型工艺制造 CFRP 轮辋样件,在考虑电化学腐蚀防护条件下,与锻造铝合金轮辐通过钢制螺栓组装得到碳 / 铝组装车轮样件。按照国家和行业标准要求,对样件进行多种疲劳和冲击试验,试验结果表明碳 / 铝组装车轮的疲劳和冲击性能满足标准要求。进一步对比仿真分析结果与试验结果,验证仿真模型的准确性以及一体化多目标优化设计的有效性。通过这一系列的工作,完成了从接头到车轮整体的全面优化和验证,为多材料组装车轮的自主研发设计提供了可靠的技术参考和依据,有助于推动汽车轻量化车轮技术的发展,提高汽车的整体性能和节能减排效果。

 

# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt

# 假设这是一个简单的有限元分析类,用于模拟车轮结构
class FiniteElementAnalysis:
    def __init__(self, mesh_size, material_properties):
        self.mesh_size = mesh_size
        self.material_properties = material_properties
        self.displacements = np.zeros((len(mesh_size), 3))  # 存储节点位移
        self.stresses = np.zeros((len(mesh_size), 6))  # 存储节点应力

    # 生成有限元网格函数(简单示例)
    def generate_mesh(self):
        # 这里可以根据 mesh_size 生成网格节点坐标等信息
        print("Generating finite element mesh...")
        # 假设简单地返回一个均匀分布的节点坐标数组(实际会更复杂)
        return np.random.rand(self.mesh_size[0], self.mesh_size[1], 3)

    # 应用边界条件函数(简单示例)
    def apply_boundary_conditions(self, mesh):
        print("Applying boundary conditions...")
        # 假设固定某些边界节点的位移(这里简单设置为0)
        boundary_nodes = np.where((mesh[:, 0] == 0) | (mesh[:, 0] == self.mesh_size[0] - 1) |
                                  (mesh[:, 1] == 0) | (mesh[:, 1] == self.mesh_size[1] - 1))
        for node in boundary_nodes:
            self.displacements[node] = [0, 0, 0]

    # 计算刚度矩阵函数(简单示例)
    def calculate_stiffness_matrix(self, mesh):
        print("Calculating stiffness matrix...")
        # 这里简单返回一个单位刚度矩阵(实际会根据材料和几何计算)
        return np.eye(len(mesh))

    # 求解位移函数(简单示例)
    def solve_displacements(self, stiffness_matrix):
        print("Solving for displacements...")
        # 假设简单求解位移(实际会更复杂的线性方程组求解)
        self.displacements = np.dot(np.linalg.inv(stiffness_matrix), np.zeros(len(stiffness_matrix)))

    # 计算应力函数(简单示例)
    def calculate_stresses(self):
        print("Calculating stresses...")
        # 这里简单根据位移计算应力(实际会更复杂的本构关系)
        self.stresses = self.displacements * 2  # 假设简单关系

    # 可视化结果函数(简单示例)
    def visualize_results(self):
        print("Visualizing results...")
        plt.figure()
        plt.plot(self.displacements[:, 0], label='Displacement in X')
        plt.plot(self.displacements[:, 1], label='Displacement in Y')
        plt.plot(self.displacements[:, 2], label='Displacement in Z')
        plt.xlabel('Node Index')
        plt.ylabel('Displacement')
        plt.title('Displacement Results')
        plt.legend()
        plt.show()

# 示例用法
mesh_size_example = [10, 10]  # 假设的网格尺寸
material_properties_example = {'Youngs_modulus': 200e9, 'Poissons_ratio': 0.3}  # 假设的材料属性
fea = FiniteElementAnalysis(mesh_size_example, material_properties_example)
mesh = fea.generate_mesh()
fea.apply_boundary_conditions(mesh)
stiffness_matrix = fea.calculate_stiffness_matrix(mesh)
fea.solve_displacements(stiffness_matrix)
fea.calculate_stresses()
fea.visualize_results()

上述代码创建了一个简单的有限元分析类,用于模拟车轮结构的一些基本有限元分析步骤,包括网格生成、边界条件应用、刚度矩阵计算、位移求解、应力计算和结果可视化。在实际的多材料组装车轮研究中,需要根据实际的材料特性、几何形状和连接情况等对代码进行大量扩展和修改,以准确模拟车轮的力学行为。


 

python

复制

# 以下是继续添加的与优化算法相关的代码部分(以简单的遗传算法示例模拟优化过程)

# 导入必要的库
import random

# 假设这是一个简单的遗传算法优化类,用于优化车轮设计参数
class GeneticAlgorithmOptimization:
    def __init__(self, population_size, num_generations, design_variables):
        self.population_size = population_size
        self.num_generations = num_generations
        self.design_variables = design_variables
        self.population = []

    # 初始化种群函数
    def initialize_population(self):
        print("Initializing population...")
        for _ in range(self.population_size):
            individual = {}
            for variable in self.design_variables:
                if variable['type'] == 'continuous':
                    individual[variable['name']] = random.uniform(variable['lower_bound'], variable['upper_bound'])
                elif variable['type'] == 'discrete':
                    individual[variable['name']] = random.choice(variable['options'])
            self.population.append(individual)

    # 评估适应度函数(这里简单返回一个随机适应度值,实际要根据车轮性能评估)
    def evaluate_fitness(self, individual):
        print("Evaluating fitness of an individual...")
        return random.random()

    # 选择操作函数(简单示例,采用轮盘赌选择)
    def selection(self):
        print("Performing selection...")
        fitness_values = [self.evaluate_fitness(individual) for individual in self.population]
        total_fitness = sum(fitness_values)
        selection_probs = [fitness / total_fitness for fitness in fitness_values]
        new_population = []
        for _ in range(self.population_size):
            random_number = random.random()
            cumulative_prob = 0
            for i in range(self.population_size):
                cumulative_prob += selection_probs[i]
                if cumulative_prob > random_number:
                    new_population.append(self.population[i])
                    break
        self.population = new_population

    # 交叉操作函数(简单示例,单点交叉)
    def crossover(self):
        print("Performing crossover...")
        new_population = []
        for i in range(0, self.population_size, 2):
            parent1 = self.population[i]
            parent2 = self.population[i + 1]
            crossover_point = random.randint(1, len(self.design_variables) - 1)
            child1 = {}
            child2 = {}
            for j in range(len(self.design_variables)):
                if j < crossover_point:
                    child1[self.design_variables[j]['name']] = parent1[self.design_variables[j]['name']]
                    child2[self.design_variables[j]['name']] = parent2[self.design_variables[j]['name']]
                else:
                    child1[self.design_variables[j]['name']] = parent2[self.design_variables[j]['name']]
                    child2[self.design_variables[j]['name']] = parent1[self.design_variables[j]['name']]
            new_population.extend([child1, child2])
        self.population = new_population

    # 变异操作函数(简单示例,对连续变量进行小范围变异)
    def mutation(self):
        print("Performing mutation...")
        for individual in self.population:
            for variable in self.design_variables:
                if variable['type'] == 'continuous':
                    if random.random() < 0.1:  # 假设变异概率为0.1
                        individual[variable['name']] = random.uniform(variable['lower_bound'], variable['upper_bound'])

    # 运行遗传算法优化函数
    def run_optimization(self):
        self.initialize_population()
        for generation in range(self.num_generations):
            print(f"Generation {generation + 1}")
            self.selection()
            self.crossover()
            self.mutation()
        best_individual = max(self.population, key=self.evaluate_fitness)
        return best_individual

# 示例用法
population_size_example = 20
num_generations_example = 10
design_variables_example = [
    {'name': 'thickness', 'type': 'continuous', 'lower_bound': 0.1, 'upper_bound': 1.0},
    {'name': 'angle', 'type': 'continuous', 'lower_bound': 0, 'upper_bound': 90},
    {'name': 'bolt_type', 'type': 'discrete', 'options': ['bolt1', 'bolt2', 'bolt3']}
]
ga_optimization = GeneticAlgorithmOptimization(population_size_example, num_generations_example, design_variables_example)
optimized_result = ga_optimization.run_optimization()
print("Optimized design parameters:", optimized_result)

这段代码实现了一个简单的遗传算法优化类,用于对车轮设计参数进行优化。在实际应用中,需要根据具体的优化目标和约束条件,结合车轮的实际性能评估方法,来准确地实现优化过程。例如,将适应度函数与车轮的疲劳寿命、冲击性能等指标相关联,以实现真正意义上的多材料组装车轮结构 - 连接 - 性能一体化多目标优化。


 

python

复制

# 以下是与试验数据处理相关的代码部分(简单示例)

# 假设这是一个处理试验数据的类,用于分析车轮试验结果
class TestDataProcessing:
    def __init__(self, test_data):
        self.test_data = test_data

    # 数据清洗函数(简单示例,去除异常值)
    def clean_data(self):
        print("Cleaning test data...")
        # 假设采用简单的3倍标准差法去除异常值(实际可能更复杂)
        mean_data = np.mean(self.test_data, axis=0)
        std_data = np.std(self.test_data, axis=0)
        cleaned_data = []
        for row in self.test_data:
            if np.all(np.abs(row - mean_data) < 3 * std_data):
                cleaned_data.append(row)
        self.test_data = np.array(cleaned_data)

    # 数据分析函数(简单示例,计算平均值和标准差)
    def analyze_data(self):
        print("Analyzing test data...")
        mean_value = np.mean(self.test_data, axis=0)
        std_value = np.std(self.test_data, axis=0)
        return mean
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值