✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
磁流变阻尼器逆模型的构建 磁流变阻尼器因其独特的力-电特性而成为半主动悬架系统的关键组件。构建精确的磁流变阻尼器逆模型对于实现精确的力值跟踪控制至关重要。逆模型能够根据期望的阻尼力输出,计算出所需的控制电流。在构建逆模型的过程中,首先对典型磁流变阻尼器进行台架试验测试,分析其阻尼特性试验数据。基于Sigmoid函数的特性,构建了磁流变阻尼器的基础模型,并通过平移和缩放对其进行调整。进一步地,根据简谐激励下的阻尼力聚集特征,引入了Sigmoid函数平移量与最大速度的约束关系,从而得到磁流变阻尼器的初步模型。最终,通过筛选重要参数,并以线性函数和指数函数耦合的方式建立了其与电流的关系,得到了总体误差为8.62%且仅含有9个参数的最终可逆模型
-
。
-
开环控制器的设计 为了实现磁流变阻尼器对期望阻尼力的准确跟踪,设计了一种基于逆模型的开环控制器。该控制器首先利用角度传感器和加速度传感器采集和估计阻尼器的运动状态。然后,根据逆模型准确地求解期望阻尼力对应的电流,并提出了基于最大速度的浮动电流限制方法,自适应地抑制阻尼特性的畸变。此外,设计了一种基于全桥电路的三极性电流驱动器,并提出了基于PI算法的两路独立PWM信号的控制方法,以实现对电流的快速平稳控制。台架试验验证了该控制器在实现不同期望阻尼特性时均具有较高的力值跟踪精度,并分析了系统误差的主要原因
-
。
-
双阻尼控制策略的提出 为了减少典型最优控制(LQR和H∞控制)在悬架控制应用中所需的输入变量数,提出了一种只需悬架相对速度和簧上质量绝对速度且与最优控制等效的双阻尼控制策略。通过对单自由度和二自由度悬架模型的全面论证,推导出了双阻尼控制与最优控制的等效关系。该策略通过将典型最优控制的控制律及其导数与悬架状态方程结合,保留速度相对项并忽略微小项后,实现了与LQR或H∞控制相同的控制效果。参数优化的方法进一步证实和优化了所得等效关系的准确性。随机激励下的数值仿真验证了在合理参数范围内双阻尼控制与典型的LQR或H∞控制的等效性,表明基于两个输入变量的双阻尼控制能实现与LQR或H∞控制相同的控制效果
#include <iostream>
#include <vector>
#include <cmath>
// 定义磁流变阻尼器参数
struct MRDamper {
double K; // 刚度系数
double C; // 阻尼系数
double voltage; // 输入电压
double force; // 输出力
};
// 计算磁流变阻尼器的输出力
void calculateForce(MRDamper& damper, double velocity) {
// 简化的磁流变阻尼器模型,力与速度和电压成正比
damper.force = damper.K * velocity + damper.C * damper.voltage;
}
// 主函数
int main() {
MRDamper damper = {100, 50, 0, 0}; // 初始化磁流变阻尼器参数
double velocity = 5.0; // 假设的速度输入
std::cout << "Initial force: " << damper.force << std::endl;
// 计算输出力
calculateForce(damper, velocity);
std::cout << "Force after calculation: " << damper.force << std::endl;
return 0;
}