✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
-
深度学习在肺部肿瘤分类中的应用背景
- 肺癌作为全球死亡率最高的癌症之一,其早期诊断和治疗至关重要。计算机断层扫描(CT)是检测肺部肿瘤的主要手段,但由于数据量大和医生主观判断等因素,容易导致误诊和漏诊。计算机辅助诊断(CAD)系统的应用可以提高诊断效率和准确性。深度学习技术的发展为肺部CT影像的自动分析提供了新的可能性,特别是在肺肿瘤的良恶性分类上展现出巨大潜力。
-
深度学习模型的理论基础与算法分析
- 深度学习模型,尤其是卷积神经网络(CNN),因其在图像识别和分类任务中的卓越性能而被广泛应用于医学图像分析。本文首先对肺肿瘤的特点进行了深入分析,并详细介绍了分类模型的评价方法与评价标准。同时,探讨了现有深度学习模型在肺肿瘤分类任务中的优势和局限性,为后续的实验研究提供了理论基础和支撑。
-
基于DenseNet的肺肿瘤分类模型设计
- 本文设计了一个基于DenseNet的肺肿瘤分类模型,该模型能够处理CT数据集的预处理,包括图像格式转换、归一化处理以及从肿瘤标注文件中提取肿瘤坐标生成肿瘤掩码图像。提出了一个两阶段的卷积神经网络图像分割模型,第一阶段使用U-Net模型进行肿瘤图像分割,第二阶段使用DenseNet模型去除假阳性。通过训练U-Net-DenseNet模型,得到了一个能够适用于其他不含肿瘤坐标注释文件的CT图像集的分割模型。此外,通过选取直径最大的肿瘤并将其转化为64x64大小进行规范化处理,将规范化处理后的图像和肿瘤良恶性标签输入DenseNet模型进行训练,得到了肺肿瘤良恶性分类结果。
-
机器学习分类器模型的设计与对比
- 除了深度学习模型,本文还设计了一个机器学习分类器模型,用于肺肿瘤良恶性分类,并与DenseNet模型的结果进行对比。这种对比有助于评估深度学习模型在肺肿瘤分类任务中的性能和准确性。
-
基于卷积自编码器和Transformer的肺肿瘤分类模型
- 本文提出了一个基于卷积自编码器(CAE)融合Transformer的模型,该模型使用完整的肺部CT图像对肺肿瘤进行良恶性分类。首先,使用ResUnet网络模型对CT图像进行分割,提取出肺实质。然后,CAE自动提取分割后肺实质的特征信息,并将这些特征信息输入Transformer模型以捕获全局切片间关系,最终得出分类结果。
-
基于卷积降噪自编码器和Transformer的肺肿瘤分类模型
- 进一步设计了一个卷积降噪自编码器(CDAE)融合Transformer的模型。该模型将ResUnet网络模型分割后的CT图像数据输入CDAE进行卷积降噪后提取特征信息,并将结果输入Transformer模型进行良恶性分类。与CAE-Transformer模型的结果对比,实验结果表明CDAE-Transformer实现了较高的分类精度,对肺部肿瘤提供了及时而准确的诊断。
-
实验结果与模型性能评估
- 实验结果表明,CDAE-Transformer模型在肺肿瘤良恶性分类任务上展现出了卓越的性能,其Roc曲线下面积(AUC)达到了0.99,特异性为100%,准确率为93.75%,敏感性为92.3%。这些结果证明了CDAE-Transformer模型的鲁棒性和有效性。
% 假设有一个肺部CT图像数据集,包含肿瘤的标签
% 加载数据集
data = load('lungCTDataset.mat');
images = data.images;
labels = data.labels;
% 划分训练集和测试集
[trainInd, testInd] = dividerand(size(images, 1), 0.8, 0, 1);
trainImages = images(trainInd, :, :);
trainLabels = labels(trainInd, :);
testImages = images(testInd, :, :);
testLabels = labels(testInd, :);
% 定义DenseNet模型
layers = [
imageInputLayer([64 64 1])
convolution2dLayer(3, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
% 设置训练选项
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.01, ...
'MaxEpochs', 20, ...
'Shuffle', 'every-epoch', ...
'ValidationData', {testImages, testLabels}, ...
'ValidationFrequency', 30, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 训练模型
net = trainNetwork(trainImages, trainLabels, layers, options);
% 评估模型
YPred = classify(net, testImages);
YTest = testLabels;
% 计算准确率
accuracy = sum(YPred == YTest)/numel(YTest);
disp(['Accuracy: ', num2str(accuracy * 100), '%']);
% 可视化部分结果
figure;
for i = 1:6
subplot(2, 3, i);
imshow(mat2gray(testImages(i, :, :)), []);
title(['Predicted: ', num2str(YPred(i)), ' Actual: ', num2str(YTest(i))]);
end