基于引力场算法的多核CPU并行计算与多种群优化研究【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)引力场优化算法的并行化实现

引力场优化算法(GFA)是一种模拟天体运动的启发式搜索算法,它通过模拟行星间的引力作用来寻找问题的最优解。在处理大规模或复杂度高的优化问题时,GFA的效率和精度成为限制其应用的关键因素。为了提高算法的执行速度和精度,本文提出了基于多种群并行模型的并行引力场优化算法(PGFA)。该方法利用MATLAB的并行计算工具箱,通过多核CPU的并行计算能力,实现了算法的并行化。具体来说,PGFA将尘埃粒子分布在多个岛屿上,每个岛屿上的粒子独立进化,实现了计算过程的并行化。这种并行化策略不仅提高了算法的执行速度,而且在保持算法精度的同时,有效减少了求解时间

(2)算法移动操作和吸收操作的改进

在并行引力场优化算法中,移动操作和吸收操作是算法性能的关键。本文对这两个操作进行了改进,以提高算法的求解精度和执行效率。移动操作通过调整粒子间的引力和斥力,使得粒子能够更快地向最优解区域移动。吸收操作则通过模拟大质量物体对小质量物体的吸引作用,加速粒子向全局最优解的收敛。改进后的移动操作和吸收操作不仅提高了算法的收敛速度,还增强了算法在多峰值优化问题中的表现

(3)实验测试与性能比较

为了验证并行引力场优化算法(PGFA)的性能,本文选取了8个经典的无约束优化问题的测试函数,从不同变量维度、不同分组数量以及不同初始规模三个角度进行了实验测试比较。实验结果表明,PGFA相比原有的GFA在计算效率上有所提高,并且在求解精度上也有所改善。此外,实验还证明了并行引力场算法的分组数对算法执行效率的影响,随着核数的增加,PGFA的算法速度进一步提升,显示出良好的可扩展性。特别是在初始规模大、复杂度高的求优问题中,PGFA相较于GFA具有更明显的优势

 

% 初始化并行池
if isempty(gcp('nocreate'))
    parpool;
end

% 定义目标函数
fun = @(x) your_objective_function(x);

% 定义优化选项,启用并行计算
options = optimoptions('fmincon','UseParallel',true);

% 定义变量的界限
lb = [-10, -10]; % 下界
ub = [10, 10];   % 上界

% 定义初始点
x0 = [0, 0];

% 调用并行优化函数
[x, fval] = fmincon(fun, x0, [], [], [], [], lb, ub, [], options);

% 输出结果
disp(['最优解:', num2str(x)]);
disp(['目标函数值:', num2str(fval)]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值