✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
股票市场的波动性一直是全球金融和经济活动的重要影响因素,因此准确预测股票市场走势对于投资者和金融机构来说具有重要意义。然而,由于股票价格受多种因素的影响,包括市场情绪、宏观经济变化、公司基本面和技术面等,而这些因素往往具有高度的非线性和混沌特性,导致股票价格预测的复杂性和挑战性。因此,如何构建一个有效的股票预测模型,并且结合量化交易策略,已经成为金融科技领域的研究重点。
本文提出了一种基于综合投资者情绪指数和多源数据融合的因子库构建的股票预测模型,并通过多种智能算法来优化该模型的参数,以提升预测的精度和稳健性。具体而言,本文结合卷积神经网络(CNN)和支持向量机(SVM)两种经典的分类模型,构建了CNN-SVM混合模型,并利用改进的黏菌优化算法(SMA)来优化混合模型的参数,从而构建了一个双分类器耦合的智能优化模型(CNNSVM-SMA)用于股票指数涨跌预测,并通过量化回测验证其优异的表现。
1. 两阶段综合投资者情绪指数构建
股票市场的波动往往与投资者情绪密切相关,因此准确捕捉投资者的情绪状态对于股票预测具有重要意义。为了能够全面反映投资者情绪的变化,本文提出了一个两阶段的综合投资者情绪指数构建方法。
(1)第一阶段:构建加权情绪指数
第一阶段通过收集并分析社交媒体评论、新闻报道以及股票论坛上的投资者言论,来构建一个基于投资者情绪的情绪指数。在构建情绪指数时,考虑到每条评论或每篇文章的阅读量、点赞量等因素,本文将这些因素作为权重进行加权计算。加权情绪指数能够更准确地反映公众对某一只股票或市场的情绪倾向,尤其是对那些关注度较高的文章或评论,能够给予更高的权重,从而使得情绪指数更具代表性。
(2)第二阶段:修正情绪指数与情绪代理指标融合
第二阶段在修正情绪指数的基础上,进一步考虑了多个情绪代理指标对市场情绪的影响。例如,百度搜索指数反映了投资者对某只股票或市场的关注度;投资者信心指数反映了投资者的主观情绪;新增投资者开户数则是客观情绪代理指标,能反映市场的热度和投资者的参与度。通过偏最小二乘法(PLS)将这四类情绪代理指标进行融合,构建出一个综合投资者情绪指数。
这一综合情绪指数能够更全面、更准确地捕捉到投资者的情绪变化,并且能够动态地反映市场情绪的波动,为股票预测模型提供更丰富的情绪信息。
2. 多因子数据源融合与股票特征筛选
股票市场受到许多因素的影响,仅仅依靠情绪指数进行预测是不够的。为了进一步提高预测模型的精度,本文结合了多种类型的股票数据源,包括历史价格指标、技术指标、关联指标以及分解重构的历史收盘价数据,这些数据为模型提供了更全面的信息。
(1)数据源收集与整合
本文首先收集了多种类型的数据,具体包括历史价格数据(如开盘价、收盘价、最高价、最低价等)、技术指标(如移动平均线、相对强弱指数RSI等)、关联指标(如成交量、换手率等)以及分解重构的历史收盘价。每种数据类型代表了市场的一部分信息,通过这些数据的整合,可以帮助模型从多个角度分析股票市场的走势。
(2)特征筛选与降维
由于股票数据通常具有高维度,直接使用所有特征可能导致过拟合问题,从而影响预测的效果。因此,本文结合了XGBoost算法、自适应噪声完备集合经验模态分解(NCEEMD)和堆叠自动编码器(SAE)三种算法,用于特征筛选和降维。通过这些算法,本文将56个因子压缩成5个关键因子,保留了大部分信息,并有效减少了模型的复杂性。
3. 基于CNN-SVM-SMA的混合模型构建与量化回测
为了提高股票预测的准确性,本文将卷积神经网络(CNN)和支持向量机(SVM)两种经典的分类模型结合,构建了CNN-SVM混合模型。该模型能够充分利用CNN在提取特征方面的优势以及SVM在分类方面的强大能力,形成一个高效的预测框架。
(1)CNN-SVM混合模型
CNN作为一种深度学习模型,能够从输入数据中自动提取高层次的特征,这对于股票市场的时间序列数据尤为重要。通过多层卷积层的堆叠,CNN能够从历史数据中学习到具有时间依赖性的特征。SVM则在对这些特征进行分类时,能够提供强大的泛化能力,避免过拟合现象的发生。因此,CNN-SVM混合模型能够高效地从多种特征中提取有用信息,并进行准确的涨跌预测。
(2)SMA优化算法
为了进一步优化CNN-SVM模型的参数,本文使用了改进的黏菌优化算法(SMA)来对模型的参数进行优化。SMA是一种模拟黏菌生长和觅食行为的优化算法,具有较强的全局搜索能力,能够避免陷入局部最优解。在本文中,SMA被用于优化CNN和SVM中的超参数,使得混合模型能够获得最优的预测结果。
(3)量化回测与策略验证
为了验证所提模型的实际应用效果,本文基于沪深300指数和上证50指数的历史数据进行了量化回测。在回测中,通过构建基于预测结果的量化策略,计算其超额收益、夏普比率、最大回撤等指标。实验结果表明,CNN-SVM-SMA模型在沪深300指数和上证50指数的预测准确率分别为71.06%和71.51%,并且添加综合投资者情绪指数后,模型的预测效果显著提升。
此外,在量化回测中,添加综合投资者情绪指数的CNN-SVM-SMA模型表现出色,在风险和收益的综合表现上优于其他对比模型,沪深300指数和上证50指数的超额收益分别为113.55%和102.28%。这些结果表明,所提模型不仅具有较高的预测准确性,而且在实际应用中能够为投资者提供有效的决策支持。
# Code for implementing CNN-SVM-SMA model for stock prediction
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense
from slime_mould_algorithm import SMA # Assuming SMA is implemented
# Load the stock data (features and labels)
data = np.loadtxt('stock_data.txt')
# Split data into features (X) and labels (y)
X = data[:, :-1] # Features: historical stock data and other factors
y = data[:, -1] # Labels: stock movement (up/down)
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define CNN model
cnn_model = Sequential()
cnn_model.add(Conv1D(64, 3, activation='relu', input_shape=(X_train.shape[1], 1)))
cnn_model.add(MaxPooling1D(2))
cnn_model.add(Flatten())
cnn_model.add(Dense(32, activation='relu'))
cnn_model.add(Dense(1, activation='sigmoid'))
# Compile CNN model
cnn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train CNN model
cnn_model.fit(X_train, y_train, epochs=10, batch_size=32)
# Use CNN model to extract features
cnn_features_train = cnn_model.predict(X_train)
cnn_features_test = cnn_model.predict(X_test)
# Define SVM model
svm_model = SVC(kernel='linear')
# Train SVM model on CNN features
svm_model.fit(cnn_features_train, y_train)
# Evaluate the model
svm_accuracy = svm_model.score(cnn_features_test, y_test)
print(f"SVM Model Accuracy: {svm_accuracy}")
# Optimize the model parameters using SMA
sma = SMA(cnn_model, svm_model)
optimized_model = sma.optimize()
# Evaluate the optimized model
optimized_accuracy = optimized_model.score(cnn_features_test, y_test)
print(f"Optimized Model Accuracy: {optimized_accuracy}")