mmdetection训练自己的数据集--CVAT标注文件导出coco格式及相关操作

前期配置及遇到的乱七八糟的问题等见:https://blog.csdn.net/chenfang0529/article/details/115094036

一、导出

使用mmdetection训练自己的数据集,数据集使用VCAT进行标注,标注的文件是视频文件,将图像帧及标注文件导出为COCO格式。常用的还有PASCAL VOC
在这里插入图片描述

导出后包括两个文件
images和annotations
在这里插入图片描述
images中包含图像帧
在这里插入图片描述
annotations包含标注文件,我们只需要对第三个文件进行修改。
在这里插入图片描述

二、相关代码

1.批量修改图片名

import os

class BatchRename():

      def rename(self):

          path="D:\\achenf\data\\taxi\\test\\task_2_9_car_test-2021_04_13_13_25_24-coco\images"
          filelist=os.listdir(path)
          total_num = len(filelist)
          i=595
          for item in filelist:
              if item.endswith('.jpg'):
                  src=os.path.join(os.path.abspath(path),item)
                  dst=os.path.join
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值