[PyTorch][chapter 63][强化学习-QLearning]

前言:

       这里结合走迷宫的例子,重点学习一下QLearning迭代更新算法

      0,1,2,3,4 是房间,之间绿色的是代表可以走过去。

5为出口

   可以用下图表示


目录:

  1.      策略评估
  2.      策略改进
  3.      迭代算法
  4.      走迷宫实现Python

一  策略评估

         

          强化学习最终是为了学习好的策略\pi,在不同的state 下面根据策略\pi做出最优的action.

对于策略评估我们通过价值函数来度量.

      1.1 状态值函数  V

          T步累积奖赏:      V_{T}^{\pi}(s)=E_{\pi}[\frac{1}{T}\sum_{t=1}^{T}r_t|s_0=s],

          \gamma折扣累积奖赏:  V_{\gamma}^{\pi}(s)=E_{\pi}[\sum_{t=0}^{\infty }\gamma^tr_{t+1}|s_0=s]

     1.2 状态-动作值函数 Q

           T步累积奖赏:      Q_{T}^{\pi}(s,a)=E_{\pi}[\frac{1}{T}\sum_{t=1}^{T}r_t|s_0=s,a_0=a],

          \gamma折扣累积奖赏:  V_{\gamma}^{\pi}(s,a)=E_{\pi}[\sum_{t=0}^{\infty }\gamma^tr_{t+1}|s_0=s,a_0=a]

       1.3   Bellan 等式展开

              状态值函数  V 

               V_{T}^{\pi}(s)=\sum_{a \in A} \pi(s,a) \sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^a(\frac{1}{T}R_{s \rightarrow s^{'}}^{a}+\frac{T-1}{T}V_{T-1}^{\pi}(s^{'}))

                V_{\gamma}^{\pi}(s)=\sum_{a \in A} \pi(s,a) \sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^a(R_{s \rightarrow s^{'}}^{a}+\gamma V_{\gamma}^{\pi}(s^{'}))

               状态-动作函数Q

              Q_{T}^{\pi}(s,a)=\sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^a(\frac{1}{T}R_{s \rightarrow s^{'}}^{a}+\frac{T-1}{T}V_{T-1}^{\pi}(s^{'}))

              Q_{\gamma}^{\pi}(s,a)=\sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^a(R_{s \rightarrow s^{'}}^{a}+\gamma V_{\gamma}^{\pi}(s^{'}))


二   策略改进

        强化学习的目的: 尝试各种策略\pi,找到值函数最大的策略(累积奖赏)

         \pi^{*}= argmax_{\pi} \sum_{s \in S} V^{\pi}(s)

       2.1 最优策略值函数

             \forall s \in S :  v^{*}(s)=V^{\pi^{*}}(s)

         由于最优值函数的累积奖赏已经达到最大值,因此可以对Bellman 等式做个改动,即对动作求和改为最优

            V_{T}^{*}(s)=max_{a\in A} \sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^a(\frac{1}{T}R_{s \rightarrow s^{'}}^{a}+\frac{T-1}{T}V_{T-1}^{*}(s^{'})) ..1

             V_{\gamma}^{*}(s)=max_{a\in A}\sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^a(R_{s \rightarrow s^{'}}^{a}+\gamma V_{\gamma}^{\pi}(s^{'}))...2

           则 

                  V^{*}(s)= max_{a \in A} Q^{\pi^{*}}(s,a)...3 

             最优 状态-动作 Bellman 等式为:

          

              Q_{T}^{*}(s,a)= \sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^a(\frac{1}{T}R_{s \rightarrow s^{'}}^{a}+\frac{T-1}{T} max_{a^{'} \in A}Q_{T-1}^{*}(s^{'},a^{'})) 

              V_{\gamma}^{*}(s,a)=\sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^a(R_{s \rightarrow s^{'}}^{a}+\gamma max_{a^{'} \in A}Q_{\gamma}^{*}(s^{'},a^{'}))


三    递推改进方式

             原始策略为 \pi

             改进后策略  \pi^{'}

            改变动作的条件为: V^{\pi}(s) \leq Q^{\pi}(s,\pi^{'}(s))

             V^{\pi}(s) \leq Q^{\pi}(s,\pi^{'}(s))

                          

                       =\sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^{\pi^{'}(s)}(R_{s \rightarrow s^{'}}^{\pi^{'}(s)}+\gamma V^{\pi}(s^{'}))

                      \leq \sum_{s^{'} \in S}P_{s\rightarrow s^{'}}^{\pi^{'}(s)}(R_{s \rightarrow s^{'}}^{\pi^{'}(s)}+\gamma Q^{\pi}(s^{'},\pi^{'}(s^{'})))

                       ...

                      =V^{\pi^{'}}(s)


四  值迭代算法

      

     4.1  环境变量

        Reward 和  QTable 都是矩阵

     

   4.2 迭代过程

    当state 为1,Q 函数更新过程

   

5.3 收敛结果


五    走迷宫实现Python
reward 我们用一个矩阵表示:

 行代表: state

 列代表: action

 值代表: reward

5.1 Environment.py 实现环境功能

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 15 11:12:13 2023

@author: chengxf2
"""

import numpy as np
from enum  import Enum

#print(Weekday.test.value) 房间
class Room(Enum):
    
      room1 = 1
      room2 = 2
      room3 = 3
      room4 = 4
      room5 = 5
      
      



class Environment():
    
    def action_name(self, action):
        
        if action ==0:
            name = "左"
        elif action ==1:
            name = "上"
        elif action ==2:
            name = "右"
        else:
            name = "上"
        return name
    
    def __init__(self):
        
        
         
         self.R =np.array([ [-1, -1, -1, -1,  0, -1],
                   [-1, -1, -1,  0, -1, 100],
                   [-1, -1, -1,  0, -1, -1],
                   [-1,  0,  0, -1,  0, -1],
                   [0,  -1, -1,  0, -1, 100],
                   [-1,  0, -1, -1,  0, 100]])
         
         
    
    def step(self, state, action):
        #即使奖励: 在state, 执行action, 转移新的 next_state,得到的即使奖励
        #print("\n step ",state, action)
        reward = self.R[state, action]
        next_state = action# action 网哪个房间走
        if action == Room.room5.value:
            
            done = True
        else:
            done = False
        
    
        return  next_state, reward,done

5.1 main.py 实现Agent 功能

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 15 11:29:14 2023

@author: chengxf2
"""

# -*- coding: utf-8 -*-
"""
Created on Mon Nov 13 09:39:37 2023

@author: chengxf2
"""

import numpy as np

def init_state(WORLD_SIZE):
    
    S =[]
    for i in range(WORLD_SIZE):
        for j in range(WORLD_SIZE):
            
            state =[i,j]
            S.append(state) 
            
    print(S)
    
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 10 16:48:16 2023

@author: chengxf2
"""

import numpy as np
from environment  import Environment


class Agent():
    
    def __init__(self,env):
        self.discount_factor = 0.8 #折扣率
        self.theta = 1e-3 #最大偏差
        self.nS = 6 #状态 个数
        self.nA=  6  #动作个数
        self.Q = np.zeros((6,6))
        self.env = env
        self.episode = 500
       
        
    
    
    #当前处于的位置,V 累积奖赏
    def one_step_lookahead(self,env, state, action):
        
        #print("\n state :",state, "\t action ",action)
        next_state, reward,done = env.step(state, action)
        
        maxQ_sa = max(self.Q[next_state,:])
        
        return next_state, reward, done,maxQ_sa
        

    
    def value_iteration(self, env, state, discount_factor =1.0):
        
         #随机选择一个action,但是不能为-1
         
         indices = np.where(env.R[state] >-1)[0]
         action =  np.random.choice(indices,1)[0]
         #print("\n state :",state, "\t action ",action)
         next_state, reward, done,maxQ_sa = self.one_step_lookahead(env, state, action)
         
         #更新当前的Q值
         
         r  = reward + self.discount_factor*maxQ_sa
         
         self.Q[state,action] = int(r)
         
         #未达到目标状态,走到房间5, 执行下一次迭代
         if done == False:
             
             self.value_iteration(env, next_state)
             
         

    def learn(self):

        
        for n in range(self.episode): #最大迭代次数
            
            #随机选择一个状态
            state = np.random.randint(0,self.nS)
            
            #必须达到目标状态,跳转到出口房间5
            self.value_iteration(env, state, discount_factor= self.discount_factor)
            #print("\n n ",n)
        print(self.Q)
        
            
if __name__ == "__main__":
    
    env = Environment()
    agent =Agent(env)
    agent.learn()
    
    
 
        
 
    




    
    



参考:

 8-QLearning基本原理_哔哩哔哩_bilibili

9-QLearning迭代计算实例_哔哩哔哩_bilibili

10-QLearning效果演示_哔哩哔哩_bilibili

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值