[移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-5]【The Riemann Mapping Theorem】

前言:

             mobius变换保角性证明一直困扰我很久.当看完黎曼映射定理以及结合MIT的数学证明

             深刻的感触到数学之美,“知之深,情之切”。

             黎曼映射(The Riemann Mapping)定理是复分析最深刻的定理之一,也是复变函数几何理论最基本、最重要的定理. 黎曼映射是 Mobius变换 的核心定义之一

      
 

     本节我们重点是搞清楚这个问题:

       

      比如可以把一个随机的曲线映射成一个单位圆盘,直观上很难去想象.

         

目录:  

  1.    黎曼映射定理
  2.    黎曼映射函数表示
  3.     黎曼映射例子
  4.     利用黎曼映射定理 证明 Mobius 变换的保角性
  5.    黎曼映射应用

一  黎曼映射定理

     简单的说黎曼映射定理是存在性定理,存在一个共形映射把单连通域映射到圆盘.

1.1 Petra-Bonfert-Tayloy 是这么介绍

 1.2 维基百科里面的简介

        单连通[区]域(simply connected domain)是1993年公布的数学名词。

单连通域是直观上没有洞的平面区域的推广,即区域内任何一条简单闭曲线的内部没有不属于D的点。


二 黎曼映射函数表示(Mobius 变换)

    我们这里举一个例子:

    因为存在共形映射,则 假设单联通区域\Omega中三个点z_0=0,z_1=1,z_2=\infty 通过mobius 变换w_1=1,w_2=i,w_3=-1

  

    这个函数如何求解?

    

   

# -*- coding: utf-8 -*-
"""
Created on Sun Apr 28 15:48:31 2024

@author: chengxf2
"""

import numpy as np
import random
import matplotlib.pyplot as plt

def moubius_transformation(z):
    i = complex(0, 1)
    numerator =-z+i #分子
    denominator=z+i #分母
    
    result = (numerator/denominator)
    
    return result

    
    
def drawImage(z, w,bound):
    
    fig, (ax1, ax2) = plt.subplots(2)
    
    
    ax1.set_xlim(-bound,bound)
    ax1.set_ylim(-bound,bound)
    
    ax2.set_xlim(-1.5,1.5)
    ax2.set_ylim(-1.5,1.5)
    #print(z)
    # 第一个子图
    #plt.subplot(2, 1, 1)  # 表示2行1列的子图布局中的第1个位置
    z_x=  z[:, 0]
    z_y = z[:, 1]
    ax1.scatter(z_x,z_y,c='b')
    #plt.plot(x, y_sin)
    ax1.title.set_text("z")
    
    # 第一个子图
    plt.subplot(2, 1, 2)  # 表示2行1列的子图布局中的第1个位置
    w_x=  w[:, 0]
    w_y = w[:, 1]
    #print(w_x)
    ax2.scatter(w_x,w_y,c='r')
    ax2.title.set_text("w")

    # 显示图像
    plt.show()

def getData():
    N = int(1e5)
    ZList =[]
    WList =[]
    
    bound =1e3
    for i in range(N):
        # 随机生成复数的实部和虚部
        real_part = random.uniform(-bound, bound) # 实部在[-10, 10]范围内
        imaginary_part = random.uniform(0, bound)  # 虚部在[-10, 10]范围内
        # 生成的复数
        z = complex(real_part, imaginary_part)
        w = moubius_transformation(z)
        ZList.append([real_part,imaginary_part])
        WList.append([w.real, w.imag])
        
    drawImage(np.array(ZList), np.array(WList),bound)
        
getData()
        

  三   黎曼映射例子

            基于上面的mobius transformation

           

2.1 上半平面映射

i.e    \Omega=\begin{Bmatrix} z: Im(z) >0 \end{Bmatrix}  为上半平面,我们发现通过Mobius transformation 函数f变换

后可以得到一个单位圆盘.

 1   通过0,1,\infty 直线(real axis)映射成了一个单位圆

  2  原来直线导向为 z_1->z_2->z_3, 对应单位圆上的导向 w_1->w_2->w_3

  我们可以带入z=-1

f(z=-1)=\frac{1+i}{-1+i}=-i
 

3.2 第一象限的Mobius 变换

使用上面的mobius 映射 f(z)=\frac{-z+i}{z+i}

但是约束条件发生变化,\Omega被限制在第一象限内.则经过mobius 变化后对应为一个半圆.

   设Q 为第一象限,其复平面被约束再正实坐实轴以及正虚轴,对应的映射为一个半圆.

3.3  我们可以通过下面几个变换还原出原来的集合形状

                  


四  利用黎曼映射定理 证明 Mobius 变换的保角性

 我们需要证明经过Mobius transformation 后,两张几何图片的夹角相同

  \alpha =\beta

    证明:

              1: 以两条曲线的交点z_0  为中心,分别做两条曲线的切线c_1,c_2 ,

    则c_1,c_2之间的夹角就是原来曲线的夹角

              

            2: 以交点z_0 为圆心,半径为r 做一个圆跟两条切线相交于 z_1,z_2

                

                      设

                           Z_1-Z_0= r e^{j\theta_1}

                           Z_2-Z_0= r e^{j\theta_2}

                     则

          3   角度计算

          

    则  

      

    4  利用黎曼映射定理,存在一个映射 one-to-one confromal mapping

\


五  黎曼映射的应用

              流体流动可以在上半平面中很好地建模。
了解另一个区域的类似流体流动,将这个流从上半平面映射到,使用黎曼映射的期望区域   。

    我们做6G智能感知的时候,基于CSI RESnel 建模可以理解在一个有噪声的域中建模

映射到一个无噪声的域中,在无噪声的环境中分析模型,然后通过Mobius 反演,平移,膨胀

等操作还原出原域的几何形状.

一些其它课程例子

单连通区域_百度百科

https://www.youtube.com/watch?v=48aerHs9wL0&t=1165s

黎曼映射定理_百度百科

共形映射_百度百科

保角变换_百度百科

  • 21
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 黎曼几何引论下册pdf 是指数学家大卫·希尔伯特所著的关于黎曼几何的教材下册的电子书格式。 黎曼几何引论是关于黎曼几何研究的经典教材之一,它揭示了黎曼几何的重要概念和原理。黎曼几何是德国数学家伯纳德·黎曼在19世纪提出的,它是研究非欧几何学的一种方法。 该教材下册主要介绍了黎曼曲面的性质和变换。黎曼曲面是指局部像欧几何的二维曲面,但在整体上可能出现非欧几何性质的空间。该教材详细讨论了黎曼曲面的拓扑结构、度量结构和保角映射等重要概念。它通过定义复变函数和解析函数的概念,构建了黎曼曲面和复变函数之间的密切联系。 通过研究黎曼曲面,人们可以深入理解复变函数和微分几何的关系。黎曼几何引论下册通过严格的数学推导和详细的例题,帮助读者系统地学习黎曼曲面的性质和变换规律。这本电子书的PDF格式便于读者在线阅读和下载。 总之,黎曼几何引论下册pdf是一本重要的数学教材,它详细介绍了黎曼曲面的性质和变换,为读者提供了深入学习和理解黎曼几何的基础知识。 ### 回答2: 《黎曼几何引论 下册》是一本关于黎曼几何的教材,以PDF形式发布。黎曼几何是数学的一个分支,研究曲面和多维空间的性质。此教材的下册可能继续介绍了黎曼几何的更高级的内容。 黎曼几何是由德国数学家黎曼所创立的,它将欧几里德几何的概念推广到了任意维度的空间。黎曼几何对于理解曲面、曲线和多维空间的性质具有重要的作用。它在物理学、工程学和计算机科学等领域都有广泛的应用。 很可能,《黎曼几何引论 下册》以形式化的方法介绍了更高级的黎曼几何理论,这包括曲率、流形和度量等概念。通过这本教材,读者可以深入了解黎曼几何的基本原理和定理,并学会运用其方法解决各种问题。 阅读这本教材有助于读者加深对曲线曲面和多维空间的理解,培养几何直观和推理能力。从初级到高级的内容可以帮助读者逐步掌握黎曼几何的理论和技巧。 虽然我无法具体探讨《黎曼几何引论 下册》的内容,但我相信这本教材将会给读者在黎曼几何领域的学习提供极大的帮助。无论是学术研究还是职业发展,黎曼几何的知识都将为读者的学术和职业生涯增添价值和竞争力。 ### 回答3: 《黎曼几何引论》是一本经典的数学著作,由德国数学家黎曼所著。该书被认为是现代微分几何的奠基之作,为研究引力理论以及广义相对论等领域的数学基础奠定了坚实的基础。该书一共分为上下两册,而本回答将重点讨论下册的内容。 第二册主要包含了对黎曼曲面的研究,其中黎曼曲面是指具有复结构的二维流形。在书的前半部分,黎曼详细介绍了黎曼曲面的性质、定义、测地线等基本概念,并阐述了曲面的切空间、度量以及黎曼度量等重要概念。同时,他也提出了一些公式和定理,如黎曼曲面上的曲率公式以及曲面上的共形变换等。 在书的后半部分,黎曼则着重研究了关于黎曼曲面的全纯函数。他给出了全纯函数的定义以及一系列重要的性质,并引入了黎曼映射定理,该定理是用来刻画两个黎曼曲面之间全纯映射的性质,为研究黎曼曲面上的解析函数提供了重要的理论工具。 总的来说,《黎曼几何引论》下册的内容涵盖了黎曼曲面的基本性质和全纯函数的研究。通过深入理解下册的内容,读者可以对黎曼曲面的几何结构和解析性质有更进一步的认识,为后续的研究工作奠定了基础。这本书对于数学研究者、几何学家以及物理学家来说都具有重要的参考价值,是一本不可多得的经典之作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值