复变函数论(七)-共形映射4-关于共形映射的黎曼存在与惟一性定理和边界对应定理1:黎曼存在与惟一性定理

本文深入探讨了复变函数论中的黎曼存在与惟一性定理,阐述了如何将单连通区域共形映射成单位圆,并讨论了在不同条件下的存在性和唯一性问题。通过实例和证明,展示了该定理在解决实际问题中的关键作用。
摘要由CSDN通过智能技术生成

不少实际问题要求我们将一个指定的区域共形映射成另一个区域来予以处理,前两节中的多数例子就是. 定理 7.6告诉我们,一个单叶解析函数能够将它的单叶性区域共形映射成另一个区域.于是,我们很自然地反过来考虑共形映射理论中的一个基本问题:

在扩充平面上任意给定两个单连通区域 D D D G G G, 是否存在一个 (单叶)解析函数,使 D D D 共形映射成 G G G ? 简单地说, 单连通区域 D D D
能共形映射成单连通区域 G G G 的条件为何? 惟一性条件为何?

上述问题可以简化成这样:

在扩充平面上任给单连通区域 D D D, 能否共形映射成单位圆?在什么条件下,这种变换还是惟一的?

事实上, 在简化后的问题中, 如果存在性有肯定的答案, 又知道了惟一性条件,则先将 D D D 共形映射成单位圆, 然后再将此单位圆共形映射成 G G G,两者复合起来即可将 D D D共形映射成 G G G, 也能弄清楚这时的惟一性条件.

对于上述简化后的基本问题, 有两种极端情形的回答是否定的:第一,区域 D D D是扩充平面 (这时 D D D 无边界点); 第二, 区域 D D D 是扩充平面除去一点 (这时 D D D 只有一个边界点. 我们不妨假设除去的是点 ∞ \infty . 如果除去的是有限点 a a a, 只需先作一个分式线性变换 ξ = 1 z − a \xi=\frac{1}{z-a} ξ=za1, 就将 D D D 先化成扩充 ξ \xi ξ 平面除去点 ∞ \infty 的区域了). 无论哪一种情形, 如果 w = w= w= f ( z ) f(z) f(z)将它们共形映射成单位圆, 则由刘维尔定理知 f ( z ) f(z) f(z) 必恒为常数,它就不可能成为我们要求的变换.

除开这两种情形,答案总是肯定的,即有:

定理 7.13(黎曼存在与惟一性定理)

扩充 z z z 平面上的单连通区域 D D D,其边界点不止一点, 则有一个在 D D D 内的单叶解析函数 w = f ( z ) w=f(z) w=f(z), 它将 D D D共形映射成单位圆 ∣ w ∣ < |w|< w< 1 ; 且当符合条件

f ( a ) = 0 , f ′ ( a ) > 0 ( a ∈ D ) f(a)=0, \quad f^{\prime}(a)>0 \quad(a \in D) f(a)=0,f(a)>0(aD)

时, 这种函数 f ( z ) f(z) f(z) 就只有一个.


(1) 惟一性条件 (7.19) 的几何意义是: 指定 a ∈ D a \in D aD 变成单位圆的圆心,而在点 a a a 的旋转角 arg ⁡ f ′ ( a ) = 0 \arg f^{\prime}(a)=0 argf(a)=0. 它依赖于三个实参数.
(2)在将单连通区域 D D D 共形映射成单连通区域 G G G的一般情形,惟一性条件可表示成

f ( a ) = b , arg ⁡ f ′ ( a ) = α . f(a)=b, \quad \arg f^{\prime}(a)=\alpha . f(a)=b,argf(a)=α.

其中 a ∈ D , b ∈ G a \in D, b \in G aD,bG, 而 α \alpha α 为实参数.

D , G D, G D,G 的边界均是周线的情形,惟一性条件也可表示成

f ( a ) = b , f ( ξ ) = η . f(a)=b, \quad f(\xi)=\eta . f(a)=b,f(ξ)=η.

其中 a ∈ D , b ∈ G . ξ a \in D, b \in G . \xi aD,bG.ξ D D D 之边界点, η \eta η G G G 之边界点.

在上述情形,惟一性条件还可表示成

f ( ξ i ) = η i ( i = 1 , 2 , 3 ) , f\left(\xi_{i}\right)=\eta_{i} \quad(i=1,2,3), f(ξi)=ηi(i=1,2,3),

其中 ξ i \xi_{i} ξi η i \eta_{i} ηi 分别是 D D D G G G 的边界上指定的三点(但绕行方向应一致). 区域的边界点的位置可用一个实参数来确定, 例如,
用某一个固定边界为起点的弧坐标即可确定.

利用施瓦茨引理,我们来证明黎曼定理的惟一性部分.

今设单叶解析函数 w 1 = f 1 ( z ) w_{1}=f_{1}(z) w1=f1(z) 也适合条件 (7.19), 并把单连通区域 D D D共形映射成单位圆 ∣ w 1 ∣ < 1 \left|w_{1}\right|<1 w1<1. 这时, 函数

w 1 = f 1 [ f − 1 ( w ) ] = Φ ( w ) w_{1}=f_{1}\left[f^{-1}(w)\right]=\Phi(w) w1=f1[f1(w)]=Φ(w)
在单位圆 ∣ w ∣ < 1 |w|<1 w<1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值