delaunay三角剖分与delaunay四面体

三角网格是最常用的三维模型表述方式,基本结构为:

  1. 顶点 (Vertex),决定空间位置
  2. 面片 (Facet),描述拓扑结构
  3. 边 (Edge)。

三角剖分就是将离散的点连入三角网格中。也可以说是把曲面剖开成一块块三角形。

下图为非delaunay三角剖分:
在这里插入图片描述

而Delaunay三角剖分给出了一个“好的”三角网格的定义,它的优秀特性是空圆特性和最大化最小角特性,这两个特性避免了狭长三角形的产生,也使得Delaunay三角剖分应用广泛。

  • 空圆特性:点集合p内任意一个点都不在𝑃 内任意一个三角面片的外接圆内。
  • 最大化最小角特性:找到每个三角形内最小的锐角,并将其最大化。

空圆特性,任意3个点的外接圆不包含第4个点,即任意3个点(三角形)的外接圆是空的。这种形式的剖分产生的最小角比不满足空圆特性的最小角大。在这里插入图片描述
下图为delaunay三角剖分:
在这里插入图片描述

Lawson Flip Algorithm:将非delaunay剖分转化为delaunay剖分。

如下图,该翻转即去掉左图对角线,连接右图对角线。两条对角线即两种不同的剖分方法。每次flip都是在增大三角剖分的最小角
在这里插入图片描述
增量delaunay三角剖分算法,在已Delaunay三角化的网格中加入一点P,只需要删除所有外接圆包含此点的三角形,并连接P与所有可见的点(即连接后不会与其他边相交),则形成的网格仍然满足Delaunay三角剖分的条件。时间复杂度为O(nlogn)

  1. 添加两个足够远的点𝑝−1, 𝑝−2,以保证𝑝−1, 𝑝−2 位于所有三角形的外接圆外。三角形𝑝0 𝑝−1 𝑝−2 包含所有的点。初始的时候仅有一个空的三角形。
  2. 依次添加新的点𝑝𝑟,检测相关三角形的空圆特性。(插入一个点会影响到周围的一块区域)

对于𝑝𝑟存在以下两种情况:
在这里插入图片描述

  • 情况1: 分别连接 𝑝𝑟𝑝𝑖,𝑝𝑟𝑝𝑗, 𝑝𝑟𝑝𝑘,分别检查与三角形𝑝𝑟𝑝𝑖𝑝𝑘, 𝑝𝑟𝑝𝑗𝑝𝑘, 𝑝𝑟𝑝𝑖𝑝𝑘相邻的3个三角形的空圆特性
  • 情况2: 分别连接 𝑝𝑟𝑝𝑙,𝑝𝑟𝑝𝑘,分别检查与三角形𝑝𝑟𝑝𝑗𝑝𝑘, 𝑝𝑟𝑝𝑗𝑝𝑙, 𝑝𝑟𝑝𝑙𝑝𝑖, 𝑝𝑟𝑝𝑘𝑝𝑖 相邻的4个三角形的空圆特性

将delaunay三角剖分应用在三维上即delaunay四面体剖分。首先我们由点云构建Delaunay四面体,然后将其标记为目标物体的的内部和外部,这里得到的是体数据,无法直接得到面片。

delaunay四面体剖分+马尔可夫优化->三维网格

Delaunay四面体剖分的基本理论—边界一致,设Σ是一个三围区域W边界的离散化-曲面网格。边界一致的问题是要求生成一个符合Σ的四面体网格T,即Σ是一个由Γ元素组成的组合体。T中可以有额外的点(Steiner点),但是这种点的数目应该被限制得越少越好。

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Delaunay四面体和Voronoi图是计算几何学中经常使用的两种图形,它们之间存在着密切的关联。 Delaunay四面体是由一组点构成的三维空间中的四面体。具体来说,对于给定的一组点,Delaunay四面体是使得这些点形成四面体的方式中,最符合一定准则的四面体。这个准则被称为Delaunay条件,它要求四面体中不包含其他的点,同时四个顶点的外接圆不包含其他点。Delaunay四面体的存在性是由一个定理保证的,因此它是唯一的。Delaunay四面体在计算机图形学、有限元分析等领域中有着广泛的应用。 Voronoi图是由一组点构成的平面或空间中的分割图。具体来说,对于给定的一组点,Voronoi图将空间划分为一系列的区域,每个区域分别与一个点相关联,该点是该区域内离该点最近的点。Voronoi图还可以表示为以点为中心的一组圆或球的并集,这些圆或球与彼此相邻的圆或球相切。Voronoi图在计算机视觉、地理信息系统、计算机网络等领域中广泛应用。 Delaunay四面体和Voronoi图之间的关联性体现在它们的对偶性上。具体来说,Delaunay四面体中的顶点对应着Voronoi图中的区域的重心。反之,Voronoi图中的边是由相应Delaunay四面体中的共享边定义的。这种对偶性使得Delaunay四面体和Voronoi图可以相互转换,因此它们在实际应用中常常是一同使用的。 简而言之,Delaunay四面体和Voronoi图是计算几何学中对点集的两种不同描述方式,它们通过对偶性相互关联,被广泛应用于许多领域中的空间分析和计算问题。 ### 回答2: Delaunay四面体和Voronoi图是计算几何学中的两个重要概念,并且它们彼此密切相关。 Delaunay四面体是一个由一组点构成的特殊三维四面体。在形成Delaunay四面体时,我们要求通过这些点的圆内不包含其他点。因此,Delaunay四面体的特点是其外接圆包含了四面体上的所有点,且没有其他点位于这个外接圆内部。这个特性使得Delaunay四面体在计算几何学和三维重建中得到广泛应用,尤其是在网格生成和三角化方面。此外,Delaunay四面体有一些重要性质,如满足空圆性质和最大角性质等,这些性质使得它成为各种算法的重要基础。 与Delaunay四面体相对应的是Voronoi图,也称为Voronoi剖分或泰森多边形。Voronoi图根据一组点的位置将空间划分为若干个区域,每个区域包含离其最近的特定点,这些区域称为Voronoi区域。Voronoi图的边界由相邻点之间的垂直平分线构成。Voronoi图在计算几何学和空间分析中具有广泛的应用,例如网格生成、空间分析和地理信息系统等领域。Voronoi图的性质使得它能够提供有关点集之间距离关系和邻近关系的信息,并在许多问题的求解中起到重要作用。 总之,Delaunay四面体和Voronoi图可以看作是计算几何学中互为补充的两个概念。Delaunay四面体提供了一种三维空间中点集的表示方法和处理技术,而Voronoi图则通过将空间划分为凸多面体来描述点集之间的距离关系。它们都在各自领域内发挥着重要的作用,并在许多计算问题的求解中发挥着重要的作用。 ### 回答3: Delaunay四面体和Voronoi图是在计算几何中常用的两个概念。 Delaunay四面体是指在给定一组离散点的情况下,通过连接这些点形成的四面体网格结构。该网格由一组共面的四面体组成,满足以下条件:任意一个四面体的外接圆球不包含其他点。换句话说,Delaunay四面体网格是一种最优的三角化方法,它最大化了所有四面体的最小角度,并且具有唯一性。Delaunay四面体网格在计算机图形学、有限元分析等领域中有广泛的应用,能够有效地处理离散点云数据。 Voronoi图,又称为泰森多边形、Dirichlet图或细胞分割图,是指在给定一组点的情况下,通过将空间分割为多个区域的方法。每个点都有一个唯一的区域,该区域包含了离它最近的点。这种分割方式形成了一种图形结构,称为Voronoi图。Voronoi图的每个点都是由与它最近的离散点共享的两条边确定的,这些边称为Voronoi边。Voronoi图在地理信息系统、图像处理、计算机视觉等领域中有广泛的应用,能够提供空间数据的分段、分类和分析功能。 综上所述,Delaunay四面体和Voronoi图是在计算几何中常用的两个概念。Delaunay四面体是通过给定一组离散点形成的最优四面体网格结构,而Voronoi图是通过给定一组点形成的空间分割图。它们在不同领域中有着广泛的应用,能够处理和分析离散点云数据以及提供空间数据的分割和分析功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值