单目视频估计人体姿态+形状【注意力机制--连续性+相关性】含6数据集及补充材料

本文提出MPS-Net,一种利用运动连续性和时间相关性的网络,用于从单目视频中估计准确、连贯的3D人体姿态和形状。通过MoCA和HAFI模块,MPS-Net增强了长程依赖的捕捉,超越了现有方法。在3DPW、MPI-INF-3DHP和Human3.6M等数据集上表现出优越性能。
摘要由CSDN通过智能技术生成

从单目视频学习捕捉人体运动估计三维人体姿态和形状

现有的方法主要依靠循环或卷积运算对这些时间信息进行建模,这限制了捕捉人体运动非局部上下文关系的能力。

GAP:自注意模块(非局部块)计算的注意map不稳定,容易导致注意力偏移,忽略主要目标物的动作或特征。
可通过引入NSSM先验知识,扩展自注意模块的学习,自适应重新校准序列中需要注意的问题,获得特征连续性依赖。

注意力MAP:红色-高注意,蓝色-低注意;

 

注意力机制与视觉相关工作:(它能够捕获长期依赖关系,并有选择地集中于输入的相关子集。)

[5] Ding-Jie Chen, He-Yen Hsieh, and Tyng-Luh Liu. Adaptive image transformer for one-shot object detection. In CVPR, 2021. 3
[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HelloWorld__来都来了

来都来了 福寿双全

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值