Generalized Focal Loss: Learning Qualified and Distributed BBoxes for Dense Object Detection论文翻译阅读

Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection论文翻译阅读

论文下载地址:点击此链接跳转.
这是博主自己在github整理的目标检测方向论文的合集,应该算比较全,目前已更新至2020ECCV,即将更新:2020IJCAI合集,欢迎下载…

部分内容参考于:大白话 Generalized Focal Loss。这是GFL作者写的一个简要的解析,简单易懂,推荐阅读。

文章部分内容可能表达得不是太准确,若有错误欢迎指出。

一、Abstract

       One-stage目标检测器通过密集分类和定位来进行目标检测,通常在分类中使用的是Focal loss,而边界框的回归定位通常是在狄拉克δ分布下学习的。one-stage检测器的一个发展趋势是引入一条预测分支来评估回归框的质量,有效改善了检测性能。本文主要是针对边界框质量估计、分类、定位这三个基本要素的表示做了研究。在现有的实践中发现了两个问题: (1) 质量估计和在训练和推理时使用不一致 (2) 存在模糊性和不确定性的复杂场景中,用于定位的Dirac delta分布是不灵活的。为解决这些问题,作者设计了新的表示,将质量估计合并到分类预测向量中,形成定位质量和分类的联合表示,并用一个向量来表示bbox位置的任意分布。这种改进的表示方法消除了训练和推理时的不一致,并准确地描述了真实数据的弹性分布,但其标签是连续的,超出了Focal loss的范围(离散标签)。因此作者提出了Generalized Focal Loss(GFL),将Focal loss从离散版本推广到连续版本。在coco test-dev上,以resnet101达到了45.0% ap。最优可达48.2%。

二、Introduction

       近年来,密集检测器逐渐开始变得火热,对bbox表示及其定位质量估计也取得了一定进展。过去几年中,边界框表示通常是以狄拉克delta分布进行建模,从FCOS开始加入了预测一个额外的定位质量(如IoU评分或centerness评分),当将质量估计与分类置信度相结合后(通常是相乘)作为inference时NMS分数排序的依据,会带来检测精度的提高。但我们发现这种方法存在以下问题:
(1)训练和推理对定位质量估计和分类分数的使用不一致:
        ① 在密集检测器中,定位质量估计和分类分数通常是在训练时独立训练,但推理时又是乘在一起结合使用,
        ② 定位质量估计的监督只针对于正样本,但在使用Focal loss时,分类分支会使少量正样本与大量负样本一起训练,在做NMS分数排序时,所有样本会将分类分数和质量预测分数进行相乘后再用于排序,对于大量负样本,它们的质量预测并没有定义,所以可能会存在一个分类分数较低的负样本,由于预测了一个不可信的高质量分数,导致其相乘后排在了获得了较低预测质量分数的正样本前面。
         以上两个因素会导致训练和测试之间的差距,可能会降低检测性能。
在这里插入图片描述
(2)不灵活的边界框表示:
       现在广泛使用的边界框表示都是建模的狄拉克δ分布,没有考虑到数据集存在的模糊性和不确定性。最近一些工作使用高斯分布来建模,但它对于捕捉边界框位置的真实分布来说过于简单,因为真实分布可以更加任意灵活,并不像高斯分布总是对称的。
       对于第一个问题,作者设计了新的定位质量表示方法,将其与分类分数合并为一个统一的分类向量表示,分类向量在GT类别索引上的值表示相应的

Generalized Focal Loss是一种处理不平衡数据集的损失函数,它在传统的Focal Loss上进行了改进,可以用于多分类和回归任务。YoloV5是一种目标检测算法,它采用一种基于单个神经网络的方法来实现快速而准确的目标检测。结合使用Generalized Focal Loss和YoloV5可以进一步提升目标检测的性能。 在目标检测任务中,不同类别的样本数量往往是不平衡的,一些常见的类别可能会有很多样本,而一些罕见的类别可能只有极少数样本。对于这种情况,使用传统的交叉熵损失函数可能会导致网络偏向于训练样本数量较多的类别,而对于那些样本数量较少的类别则表现不佳。 Generalized Focal Loss采用了类似于Focal Loss的方法来处理不平衡数据集,该方法通过降低容易分类的样本的权重来提高难以分类的样本在训练过程中的重要性。此外,Generalized Focal Loss还添加了一些参数来控制样本难度的权重,这提高了模型对于罕见类别的识别能力。 结合Generalized Focal Loss和YoloV5可以进一步提高目标检测性能。YoloV5现有的版本已经使用Focal Loss来处理类别不平衡的问题,但使用Generalized Focal Loss可以更加灵活地进行参数调节。通过用Generalized Focal Loss替换原有的损失函数,可以减少误分类样本的影响,提高整个模型对于样本数量较少的类别的识别能力,从而进一步提高整个目标检测系统的性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值