论文阅读:Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Dete

文章目录

1、论文总述

本篇论文提出了泛化版的Focal loss(可以同时用于分类和回归分支),既将class 得分和 centerness得分的预测合并为了一个分支,解决了training和test时的gap,而且将边框回归的每个确定值的预测改为了16个离散值的预测,然后将其积分得到最终值。

论文非常值得精度,里面值得学习的地方很多。

原作者在知乎上对本篇论文解读的已经非常好了,可直接去看,本人就不赘述了。
大白话 Generalized Focal Loss

本文大概意思:
在这里插入图片描述

背景框也会预测一些class 得分低 但是IOU得分高的情况(由于训练时候负样本没有监督):
在这里插入图片描述

标注框比较粗糙 以及 遮挡情况下 边界不明显的问题:

在这里插入图片描述

回归分支由原来的预测一个值 改为 预测一个分布:
在这里插入图片描述

最终的loss有GIOU:

在这里插入图片描述

回归部分一些超参数的选取:
在这里插入图片描述

Generalized Focal Loss是一种处理不平衡数据集的损失函数,它在传统的Focal Loss上进行了改进,可以用于多分类和回归任务。YoloV5是一种目标检测算法,它采用一种基于单个神经网络的方法来实现快速而准确的目标检测。结合使用Generalized Focal Loss和YoloV5可以进一步提升目标检测的性能。 在目标检测任务中,不同类别的样本数量往往是不平衡的,一些常见的类别可能会有很多样本,而一些罕见的类别可能只有极少数样本。对于这种情况,使用传统的交叉熵损失函数可能会导致网络偏向于训练样本数量较多的类别,而对于那些样本数量较少的类别则表现不佳。 Generalized Focal Loss采用了类似于Focal Loss的方法来处理不平衡数据集,该方法通过降低容易分类的样本的权重来提高难以分类的样本在训练过程中的重要性。此外,Generalized Focal Loss还添加了一些参数来控制样本难度的权重,这提高了模型对于罕见类别的识别能力。 结合Generalized Focal Loss和YoloV5可以进一步提高目标检测性能。YoloV5现有的版本已经使用Focal Loss来处理类别不平衡的问题,但使用Generalized Focal Loss可以更加灵活地进行参数调节。通过用Generalized Focal Loss替换原有的损失函数,可以减少误分类样本的影响,提高整个模型对于样本数量较少的类别的识别能力,从而进一步提高整个目标检测系统的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值