论文阅读:Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Dete

这篇论文提出了一种泛化的Focal Loss,它结合分类和回归预测,解决了训练与测试之间的差距问题。通过将边界框回归预测离散化,并引入GIOU损失,提高了模型的准确性。文章探讨了在标注不精确和遮挡情况下模型的改进,并讨论了相关超参数的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

1、论文总述

本篇论文提出了泛化版的Focal loss(可以同时用于分类和回归分支),既将class 得分和 centerness得分的预测合并为了一个分支,解决了training和test时的gap,而且将边框回归的每个确定值的预测改为了16个离散值的预测,然后将其积分得到最终值。

论文非常值得精度,里面值得学习的地方很多。

原作者在知乎上对本篇论文解读的已经非常好了,可直接去看,本人就不赘述了。
大白话 Generalized Focal Loss

本文大概意思:
在这里插入图片描述

背景框也会预测一些class 得分低 但是IOU得分高的情况(由于训练时候负样本没有监督):
在这里插入图片描述

标注框比较粗糙 以及 遮挡情况下 边界不明显的问题:

在这里插入图片描述

回归分支由原来的预测一个值 改为 预测一个分布:
在这里插入图片描述

最终的loss有GIOU:

在这里插入图片描述

回归部分一些超参数的选取:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值