文章目录
1、论文总述
本篇论文提出了泛化版的Focal loss(可以同时用于分类和回归分支),既将class 得分和 centerness得分的预测合并为了一个分支,解决了training和test时的gap,而且将边框回归的每个确定值的预测改为了16个离散值的预测,然后将其积分得到最终值。
论文非常值得精度,里面值得学习的地方很多。
原作者在知乎上对本篇论文解读的已经非常好了,可直接去看,本人就不赘述了。
大白话 Generalized Focal Loss
本文大概意思:
背景框也会预测一些class 得分低 但是IOU得分高的情况(由于训练时候负样本没有监督):
标注框比较粗糙 以及 遮挡情况下 边界不明显的问题:
回归分支由原来的预测一个值 改为 预测一个分布:
最终的loss有GIOU:
回归部分一些超参数的选取: