1.5 Matrix Multiplication

本文深入探讨了矩阵乘法的性质,包括不交换性、结合律和矩阵幂的意义。通过实例展示了如何计算矩阵乘积,并解释了矩阵乘法中线性组合的概念。此外,讨论了初等矩阵、矩阵乘法与行变换的关系,以及寻找满足特定条件的矩阵对的问题。
摘要由CSDN通过智能技术生成

矩阵可以理解为线性变换在一组基下的表示,故矩阵乘法就是两个线性变换结合后的表示。Hoffman把矩阵更一般地作为函数,故其给矩阵乘法的引入是:矩阵乘法是对矩阵的行进行线性组合时产生的东西。在定义和后面的例子(Example 10)中,都体现了矩阵乘法的这一个思想:A某一行的每一个数与B的行向量进行线性组合,得到AB的这一行的结果。特别提到了矩阵乘法是not commutative的。
列矩阵(column matrix)引致一个有用的notation(可以从定义证得):如果有矩阵 B n × p B_{n\times p} Bn×p,其中列向量为 B 1 , … , B p B_1,\dots,B_p B1,,Bp,则 B = [ B 1 , … , B p ] B=\begin{bmatrix}B_1,\dots,B_p\end{bmatrix} B=[B1,,Bp]并且 A B = [ A B 1 , … , A B p ] AB=\begin{bmatrix}AB_1,\dots,AB_p\end{bmatrix} AB=[AB1,,ABp]
Theorem 8 给出了矩阵乘法满足结合律的证明。其后说明了矩阵的幂是什么,以及 A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C说明linear combinations of linear combinations of the rows of C are again linear combinations of the rows of C,我认为这个诠释很有意思,Hoffman时刻在提示运算背后的思想。
最后就是要引入elementary matrix,与1.3节介绍的elementary row operations密切相关,elementary matrix的定义是从 I I I进行一次elementary row operations得到的矩阵,故其必是和 I I I同阶的方阵。Theorem 9 说明,如果用 e e e表示一个elementary row operation,则 e ( A ) = e ( I ) A e(A)=e(I)A e(A)=e(I)A,即行变换等于左乘对应初等矩阵。其推论显示: A , B A,B A,B两矩阵row equivalent的充要条件是 B = P A B=PA B=PA,其中 P P P是一堆初等矩阵乘积。

Exercises

1. Let

A = [ 2 − 1 1 1 2 1 ] , B = [ 3 1 − 1 ] , C = [ 1 − 1 ] A=\begin{bmatrix}2&-1&1\\1&2&1\end{bmatrix},\quad B=\begin{bmatrix}3\\1\\-1\end{bmatrix},\quad C=\begin{bmatrix}1&-1\end{bmatrix} A=[211211],B=311,C=[11]

Compute A B C ABC ABC and C A B CAB CAB.

Solution:
A B C = [ 2 − 1 1 1 2 1 ] [ 3 1 − 1 ] [ 1 − 1 ] = [ 4 4 ] [ 1 − 1 ] = [ 4 − 4 4 − 4 ] C A B = [ 1 − 1 ] [ 2 − 1 1 1 2 1 ] [ 3 1 − 1 ] = [ 1 − 3 0 ] [ 3 1 − 1 ] = 0 ABC=\begin{bmatrix}2&-1&1\\1&2&1\end{bmatrix} \begin{bmatrix}3\\1\\-1\end{bmatrix} \begin{bmatrix}1&-1\end{bmatrix} =\begin{bmatrix}4\\4\end{bmatrix} \begin{bmatrix}1&-1\end{bmatrix}=\begin{bmatrix}4&-4\\4&-4\end{bmatrix} \\ CAB=\begin{bmatrix}1&-1\end{bmatrix}\begin{bmatrix}2&-1&1\\1&2&1\end{bmatrix}\begin{bmatrix}3\\1\\-1\end{bmatrix}=\begin{bmatrix}1&-3&0\end{bmatrix}\begin{bmatrix}3\\1\\-1\end{bmatrix}=0 ABC=[211211]311[11]=[44][11]=[4444]CAB=[11][211211]311=[130]311=0

2. Let

A = [ 1 − 1 1 2 0 1 3 0 1 ] , B = [ 2 − 2 1 3 4 4 ] A=\begin{bmatrix}1&-1&1\\2&0&1\\3&0&1\end{bmatrix},\quad B=\begin{bmatrix}2&-2\\1&3\\4&4\end{bmatrix} A=123100111,B=214234
Verify directly that A ( A B ) = A 2 B A(AB)=A^2B A(AB)=A2B
Solution:
A ( A B ) = [ 1 − 1 1 2 0 1 3 0 1 ] ( [ 1 − 1 1 2 0 1 3 0 1 ] [ 2 − 2 1 3 4 4 ] ) = [ 1 − 1 1 2 0 1 3 0 1 ] [ 5 − 1 8 0 10 − 2 ] = [ 7 − 3 20 − 4 25 − 5 ] A 2 B = ( [ 1 − 1 1 2 0 1 3 0 1 ] [ 1 − 1 1 2 0 1 3 0 1 ] ) [ 2 − 2 1 3 4 4 ] = [ 2 − 1 1 5 − 2 3 6 − 3 4 ] [ 2 − 2 1 3 4 4 ] = [ 7 − 3 20 − 4 25 − 5 ] A(AB)=\begin{bmatrix}1&-1&1\\2&0&1\\3&0&1\end{bmatrix}\left(\begin{bmatrix}1&-1&1\\2&0&1\\3&0&1\end{bmatrix}\begin{bmatrix}2&-2\\1&3\\4&4\end{bmatrix}\right)=\begin{bmatrix}1&-1&1\\2&0&1\\3&0&1\end{bmatrix}\begin{bmatrix}5&-1\\8&0\\10&-2\end{bmatrix}=\begin{bmatrix}7&-3\\20&-4\\25&-5\end{bmatrix} \\ A^2 B=\left(\begin{bmatrix}1&-1&1\\2&0&1\\3&0&1\end{bmatrix}\begin{bmatrix}1&-1&1\\2&0&1\\3&0&1\end{bmatrix}\right)\begin{bmatrix}2&-2\\1&3\\4&4\end{bmatrix}=\begin{bmatrix}2&-1&1\\5&-2&3\\6&-3&4\end{bmatrix}\begin{bmatrix}2&-2\\1&3\\4&4\end{bmatrix}=\begin{bmatrix}7&-3\\20&-4\\25&-5\end{bmatrix} A(AB)=12

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值