2.3 Bases and Dimension

这篇博客探讨了线性空间的维度这一重要概念,定义了向量的线性相关性和线性无关性,并引入了基的概念,强调基在有限维空间中的角色。通过一系列例题和定理,阐述了如何判断向量是否线性相关,如何找到子空间的基,以及维数的计算。此外,还讨论了如何表达标准基向量和如何将有限数量的向量扩展为空间的一组基。
摘要由CSDN通过智能技术生成

dimension是刻画线性空间的一个重要指标。首先对linearly dependent和independent进行了定义。basis就是同时满足linearly independent和span两个条件的集合,如果basis是有限的,那么该空间就是有限维的。Example 13给出了standard basis的模式,Example 14说明:可逆矩阵的列向量构成 F n × 1 F^{n\times 1} Fn×1的一组basis,Example 15给出了如何得到homogeneous system解空间的一组基。Example 16再次用多项式函数空间给出了infinite basis的一个例子,这个例子的推导和思路值得学习。
Theorem 4是个很重要的定理,其说明如果能找到有限数量的m个向量spans V,那么所有线性无关向量组都是有限的并且不会超过m个。证明直接证所有超过m个的向量组是线性相关的,使用方程组理论和第一章的Theorem 6即可。Corollary 1说明了dimension是唯一的。Corollary 2说明维数的重要性:其是线性相关/无关和能否span的一个分界线。比维数多的不能线性无关,比维数少的不能span。
在Theorem 5之前有一个有用的Lemma,即如果 S S S是linearly independent并且 β \beta β不在span(S)中,那么 S ∪ { β } S\cup \{\beta\} S{ β}是linearly independent的。证明用反证法。Theorem 5说明:有限维空间的子集肯定有限维,并且任何该子集中的线性无关向量组都可以扩充成空间的一组基。其实反过来也成立,即任何span该空间的向量组都可以缩成一组基。Corollary 1说明真子集的维数一定严格小于空间本身,Corollary 2说任意线性无关向量组都可以扩充成空间的一组基。Corollary 3说明,如果n阶方阵A的行向量线性无关,则A可逆。主要由于行向量的空间维数为 n n n
Theorem 6是大家很熟悉的关于维数的定理,即对于有限维空间 W 1 , W 2 W_1,W_2 W1,W2,有 dim ⁡ W 1 + dim ⁡ W 2 = dim ⁡ ( W 1 ∩ W 2 ) + dim ⁡ ( W 1 + W 2 ) \dim W_1+\dim W_2=\dim (W_1\cap W_2)+\dim (W_1+W_2) dimW1+dimW2=dim(W1W2)+dim(W1+W2)
最后一部分,老先生说了一下对于集合与序列如何区分,核心是能否重复以及order是不是重要的,重点在后者,因为线性无关保证了向量组里不会有重复(相同的)向量。后者则是下一节学坐标时需要关注的新增东西。

Exercises

1. Prove that if two vectors are linearly dependent, one of them is a scalar multiplication of the other.

Solution: Let a,b be linearly dependent, then there’s scalars c 1 , c 2 c_1,c_2 c1,c2, not all zero, such that c 1 a + c 2 b = 0 c_1 a+c_2 b=0 c1a+c2b=0. If c 1 ≠ 0 c_1\neq 0 c1=0, then we have a = − ( c 2 / c 1 ) b a=-(c_2 /c_1 )b a=(c2/c1)b, otherwise c 2 ≠ 0 c_2\neq 0 c2=0, so b = − ( c 1 / c 2 ) a b=-(c_1/c_2 )a b=(c1/c2)a.

2. Are the vectors

α 1 = ( 1 , 1 , 2 , 4 ) , α 2 = ( 2 , − 1 , − 5 , 2 ) α 3 = ( 1 , − 1 , − 4 , 0 ) , α 4 = ( 2 , 1 , 1 , 6 ) \alpha_1=(1,1,2,4),\quad \alpha_2=(2,-1,-5,2)\\ \alpha_3=(1,-1,-4,0), \quad\alpha_4=(2,1,1,6) α1=(1,1,2,4),α2=(2,1,5,2)α3=(1,1,4,0),α4=(2,1,1,6)

linearly independent in R 4 R^4 R4?

Solution: Since
[ 1 1 2 4 2 − 1 − 5 2 1 − 1 − 4 0 2 1 1 6 ] → [ 1 1 2 4 0 − 3 − 9 − 6 0 − 2 − 6 − 4 0 − 1 − 3 − 2 ] → [ 1 1 2 4 0 1 3 2 0 1 3 2 0 1 3 2 ] \begin{bmatrix}1&1&2&4\\2&-1&-5&2\\1&-1&-4&0\\2&1&1&6\end{bmatrix}\rightarrow\begin{bmatrix}1&1&2&4\\0&-3&-9&-6\\0&-2&-6&-4\\0&-1&-3&-2\end{bmatrix}\rightarrow\begin{bmatrix}1&1&2&4\\0&1&3&2\\0&1&3&2\\0&1&3&2\end{bmatrix} 121211112541420610001321296346421000111123334222
We have ( α 2 − 2 α 1 ) × ( 1 / 3 ) = ( α 3 − α 1 ) × ( 1 / 2 ) (α_2-2α_1 )\times (1/3)=(α_3-α_1 )\times (1/2) (α22α1)×(1/3)=(α3α1)×(1/2), or
3 ( α 3 − α 1 ) = 2 ( α 2 − 2 α 1 ) ⇒ α 1 − 2 α 2 + 3 α 3 + 0 α 4 = 0 3(α_3-α_1 )=2(α_2-2α_1 ) \Rightarrow α_1-2α_2+3α_3+0α_4=0 3(α3α1)=2(α22α1)α12α2+3α3+0α4=0
Thus the vectors are linearly dependent.

3. Find a basis for the subspace of R 4 R^4 R4 spanned by the four vectors of Exercise 2?

Solution: The vectors ( α 1 , α 2 ) (α_1,α_2 ) (α1,α2) can be a basis.

4. Show that the vectors

α 1 = ( 1 , 0 , − 1 ) , α 2 = ( 1 , 2 , 1 ) , α 3 = ( 0 , − 3 , 2 ) \alpha_1=(1,0,-1),\quad \alpha_2=(1,2,1),\quad \alpha_3=(0,-3,2) α1=(1,0,1),α2=(1,2,1),α3=(0,3,2)

form a basis for R 3 R^3 R3. Express each of the standard basis vectors as linear combinations of α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3.

Solution: We have
[ 1 0 − 1 1 2 1 0 − 3 2 ] → [ 1 0 − 1 0 2 2 0 − 3 2 ] → [ 1 0 − 1 0 1 1 0 0 5 ] → [ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix}1&0&-1\\1&2&1\\0&-3&2\end{bmatrix}\rightarrow\begin{bmatrix}1&0&-1\\0&2&2\\0&-3&2\end{bmatrix}\rightarrow\begin{bmatrix}1&0&-1\\0&1&1\\0&0&5\end{bmatrix}\rightarrow\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix} 110023112100023122100010

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值