3.3 Isomorphism

本文深入探讨了向量空间的同构概念,它是一个一一对应且满射的关系,本质是向量空间的等价关系。定理表明所有n维向量空间与Fn同构,并且同构保持维度不变。通过一系列练习题,解释了如何构造和证明不同空间之间的同构关系,例如复数空间到实数空间的映射,以及2×2复Hermitian矩阵到R4的同构。此外,还讨论了同构在有限维向量空间等价性中的关键作用,证明了当两个向量空间的维数相等时它们必同构。
摘要由CSDN通过智能技术生成

这一节把isomorphism单独阐述,即既是一对一又是onto的,也就是一个bijection。其本质可以用文中的一句话概括:isomorphism is an equivalence relation on the class of vector spaces。Theorem 10说明了所有n维vector space都和 F n F^n Fn是isomorphic的,实际上,isomorphism是“dimension preserving”。

Exercises

1.Let V V V be the set of complex numbers and let F F F be the field of real numbers. With the usual operations, V V V is a vector space over F F F. Describe explicitly an isomorphism of this space onto R 2 R^2 R2.
Solution: For any c = a + b i ∈ V c=a+bi∈V c=a+biV, define U ( c ) = ( a , b ) U(c)=(a,b) U(c)=(a,b), then U U U is an isomorphism of V V V onto R 2 R^2 R2.

2.Let V V V be a vector space over the field of complex numbers, and suppose there is an isomorphism T T T of V V V onto C 3 C^3 C3. Let α 1 , α 2 , α 3 , α 4 \alpha_1,\alpha_2,\alpha_3,\alpha_4 α1,α2,α3,α4 be vectors in V V V such that
T α 1 = ( 1 , 0 , i ) , T α 2 = ( − 2 , 1 + i , 0 ) , T α 3 = ( − 1 , 1 , 1 ) , T α 4 = ( 2 , i , 3 ) . T\alpha_1=(1,0,i),\qquad T\alpha_2=(-2,1+i,0),\\T\alpha_3=(-1,1,1),\qquad T\alpha_4=(\sqrt2,i,3). Tα1=(1,0,i),Tα2=(2,1+i,0),Tα3=(1,1,1),Tα4=(2 ,i,3).
( a ) Is α 1 \alpha_1 α1 in the subspace spanned by α 2 \alpha_2 α2 and α 3 \alpha_3 α3?
( b ) Let W 1 W_1 W1 be the subspace spanned by α 1 \alpha_1 α1 and α 2 \alpha_2 α2, and let W 2 W_2 W2 be the subspace spanned by α 3 \alpha_3 α3 and α 4 \alpha_4 α4. What is the intersection of W 1 W_1 W1 and W 2 W_2 W2?
( c ) Find a basis for the subspace of V V V spanned by the four vectors
α j \alpha_j αj.
Solution:
( a ) It is easy to see T α 2 , T α 3 Tα_2,Tα_3 Tα2,Tα3 are linearly independent, thus α 2 , α 3 α_2,α_3 α2,α3 are linearly independent, since
[ 1 0 i − 2 1 + i 0 − 1 1 1 ] → [ 1 0 i 0 1 + i 2 i 0 1 1 + i ] → [ 1 0 i 0 1 1 + i 0 0 0 ] \begin{bmatrix}1&0&i\\-2&1+i&0\\-1&1&1\end{bmatrix}→\begin{bmatrix}1&0&i\\0&1+i&2i\\0&1&1+i\end{bmatrix}→\begin{bmatrix}1&0&i\\0&1&1+i\\0&0&0\end{bmatrix} 12101+i1i0110001+i1i2i1+i100010i1+i0
T α 1 , T α 2 , T α 3 Tα_1,Tα_2,Tα_3 Tα1,Tα2,Tα3 are linearly dependent, thus α 1 α_1 α1 is in the subspace spanned by α 2 , α 3 α_2,α_3 α2,α3.
( b ) From ( a ) we have ( 1 + i ) ( T α 2 + 2 T α 1 ) = T α 3 + T α 1 (1+i)(Tα_2+2Tα_1 )=Tα_3+Tα_1 (1+i)(Tα2+2Tα1)=Tα

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值