3.3 Isomorphism

这一节把isomorphism单独阐述,即既是一对一又是onto的,也就是一个bijection。其本质可以用文中的一句话概括:isomorphism is an equivalence relation on the class of vector spaces。Theorem 10说明了所有n维vector space都和FnF^n是isomorphic的,实际上,isomorphism是“dimension preserving”。


  1. Let VV be the set of complex numbers and let FF be the field of real numbers. With the usual operations, VV is a vector space over FF. Describe explicitly an isomorphism of this space onto R2R^2.
    Solution: For any c=a+biVc=a+bi∈V, define U(c)=(a,b)U(c)=(a,b), then UU is an isomorphism of VV onto R2R^2.

  2. Let VV be a vector space over the field of complex numbers, and suppose there is an isomorphism TT of VV onto C3C^3. Let α1,α2,α3,α4\alpha_1,\alpha_2,\alpha_3,\alpha_4 be vectors in VV such that
    Tα1=(1,0,i),Tα2=(2,1+i,0),Tα3=(1,1,1),Tα4=(2,i,3).T\alpha_1=(1,0,i),\qquad T\alpha_2=(-2,1+i,0),\\T\alpha_3=(-1,1,1),\qquad T\alpha_4=(\sqrt2,i,3).
    ( a ) Is α1\alpha_1 in the subspace spanned by α2\alpha_2 and α3\alpha_3?
    ( b ) Let W1W_1 be the subspace spanned by α1\alpha_1 and α2\alpha_2, and let W2W_2 be the subspace spanned by α3\alpha_3 and α4\alpha_4. What is the intersection of W1W_1 and W2W_2?
    ( c ) Find a basis for the subspace of VV spanned by the four vectors αj\alpha_j.
    ( a ) It is easy to see Tα2,Tα3Tα_2,Tα_3 are linearly independent, thus α2,α3α_2,α_3 are linearly independent, since
    Tα1,Tα2,Tα3Tα_1,Tα_2,Tα_3 are linearly dependent, thus α1α_1 is in the subspace spanned by α2,α3α_2,α_3.
    ( b ) From ( a ) we have (1+i)(Tα2+2Tα1)=Tα3+Tα1(1+i)(Tα_2+2Tα_1 )=Tα_3+Tα_1, thus we have
    (1+i)(α2+2α1)=α3+α1(1+i)(α_2+2α_1 )=α_3+α_1
    Since Tα4Tα_4 is not in the span of Tα1,Tα2Tα_1,Tα_2, we have W1W2={kα3:kC}W_1\cap W_2=\{kα_3:k∈C\}.
    ( c ) One basis can be (α1,α2,α4)(α_1,α_2,α_4).

  3. Let WW be the set of all 2×22\times 2 complex Hermitian matrices, that is, the set of 2×22\times 2 complex matrices AA such that Aij=AjiA_{ij}=\overline{A_{ji}} (the bar denoting complex conjugation). As we pointed out in Example 6 of Chapter 2, WW is a vector space over the field of real numbers, under the usual operations. Verify that
    (x,y,z,t)[t+xy+izyiztx](x,y,z,t)\to\begin{bmatrix}t+x&y+iz\\y-iz&t-x \end{bmatrix}
    is an isomorphism of R4R^4 onto WW.
    Solution: Denote T(x,y,z,t)=[t+xy+izyiztx]T(x,y,z,t)=\begin{bmatrix}t+x&y+iz\\y-iz&t-x\end{bmatrix}, if U(x,y,z,t)=0=[0000]U(x,y,z,t)=0=\begin{bmatrix}0&0\\0&0\end{bmatrix}, then it is easy to see t+x=tx=0t+x=t-x=0, thus t=x=0t=x=0, and y+iz=0y+iz=0 means z=0z=0 and y=0y=0. So TT is one-one. Next let any AWA∈W, then A=[a11a12a21a22]A=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}, since a11=a11\overline{a_{11}}=a_{11} we know a11Ra_{11}∈R, also a22Ra_{22}∈R, then we let
    t=a11+a222,x=a11a222,y=(a12),z=(a12)t=\frac{a_{11}+a_{22}}{2},\quad x=\frac{a_{11}-a_{22}}{2},\quad y=\Re(a_{12}),\quad z=\Im(a_{12})
    it is easy to see T(x,y,z,t)=AT(x,y,z,t)=A.

  4. Show that Fm×nF^{m\times n} is isomorphic to FmnF^{mn}.
    Solution: For any A=[a11a1nam1amn]Fm×nA=\begin{bmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{m1}&\cdots&a_{mn}\end{bmatrix}∈F^{m×n}, we define T(A)=(a11,,a1n,,am1,,amn)T(A)=(a_{11},\dots,a_{1n},\dots,a_{m1},\dots,a_{mn}), i.e., T(A)T(A) is a sequence of ordered list of the row vectors of AA. TT is an isomorphism from Fm×nF^{m×n} to FmnF^{mn}.

  5. Let VV be the set of complex numbers regarded as a vector space over the field of real numbers (Exercise 1). We define a function TT from VV into the space of 2×22\times 2 real matrices, as follows. If z=x+iyz=x+iy with xx and yy real numbers, then
    T(z)=[x+7y5y10yx7y].T(z)=\begin{bmatrix}x+7y&5y\\-10y&x-7y \end{bmatrix}.
    ( a ) Verify that TT is a one-one (real) linear transformation of VV into the space of 2×22\times 2 real matrices.
    ( b ) Verify that T(z1z2)=T(z1)T(z2)T(z_1z_2)=T(z_1)T(z_2).
    ( c ) How would you describe the range of TT?
    ( a ) It is enough to show T(z)=0T(z)=0 means z=0z=0, it is easy to see
    [x+7y5y10yx7y]=[0000]x=0,y=0\begin{bmatrix}x+7y&5y\\-10y&x-7y\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix} ⇒x=0,y=0
    ( b ) Let z1=a+bi,z2=c+diz_1=a+bi,z_2=c+di, then z1z2=(acbd)+(ad+bc)iz_1 z_2=(ac-bd)+(ad+bc)i, so
    T(z1z2)=[acbd+7(ad+bc)5(ad+bc)10(ad+bc)acbd7(ad+bc)]T(z_1 z_2 )=\begin{bmatrix}ac-bd+7(ad+bc)&5(ad+bc)\\-10(ad+bc)&ac-bd-7(ad+bc)\end{bmatrix}
    T(z1)T(z2)=[a+7b5b10ba7b][c+7d5d10dc7d]=[(a+7b)(c+7d)50bd5d(a+7b)+5b(c7d)10b(c+7d)10d(a7b)(a7b)(c7d)50bd]=T(z1z2)\begin{aligned}T(z_1)T(z_2)&=\begin{bmatrix}a+7b&5b\\-10b&a-7b\end{bmatrix}\begin{bmatrix}c+7d&5d\\-10d&c-7d\end{bmatrix} \\&=\begin{bmatrix}(a+7b)(c+7d)-50bd&5d(a+7b)+5b(c-7d)\\-10b(c+7d)-10d(a-7b)&(a-7b)(c-7d)-50bd\end{bmatrix} \\&=T(z_1 z_2)\end{aligned}
    ( c ) The range of TT is the subspace of 2×22×2 matrices AA such that A21=2A12A_{21}=-2A_{12}.

  6. Let VV and WW be finite-dimensional vector spaces over the field FF. Prove that VV and WW are isomorphic if and only if dimV=dimW\dim V=\dim W.
    Solution: If VV and WW are isomorphic, then let TT be an isomorphism from VV to WW, and {a1,,an}\{a_1,\dots,a_n \} be a basis of VV, so dimV=n\dim ⁡V=n, consider {Ta1,,Tan}\{Ta_1,\dots,Ta_n \}, for any wW,w=Tv,vVw∈W,w=Tv,v∈V, then we can find scalars x1,,xnx_1,\dots,x_n such that v=i=1nxiaiv=\sum_{i=1}^nx_i a_i, so w=T(i=1nxiai)=i=1nxiTaiw=T(\sum_{i=1}^nx_i a_i)=\sum_{i=1}^nx_i Ta_i, so {Ta1,,Tan}\{Ta_1,\dots,Ta_n \} spans WW. If i=1nxiTai=0\sum_{i=1}^nx_i Ta_i=0, then T(i=1nxiai)=0T(\sum_{i=1}^nx_i a_i)=0 since TT is non-singular, then
    xi=0,i=1,,nx_i=0,\quad i=1,\dots,n
    which means {Ta1,,Tan}\{Ta_1,\dots,Ta_n \} is linearly independent, we can conclude {Ta1,,Tan}\{Ta_1,\dots,Ta_n \} is a basis of WW, and then dimW=n=dimV\dim ⁡W=n=\dim ⁡V.
    Conversely, if dimV=dimW:=n\dim ⁡V=\dim ⁡W:=n, then VV and WW are isomorphic to FnF^n, by Theorem 10, let T:VFnT:V→F^n and U:WFnU:W→F^n be two isomorphism, then U1T:VWU^{-1} T:V→W is an isomorphism.

  7. Let VV and WW be vector spaces over the field FF and let UU be an isomorphism of VV onto WW. Prove that TUTU1T\to UTU^{-1} is an isomorphism of L(V,V)L(V,V) onto L(W,W)L(W,W).
    Solution: Denote M(T)=UTU1M(T)=UTU^{-1}, if M(T)=0M(T)=0, then UTU1(w)=0UTU^{-1}(w)=0 for all wWw∈W, since UU is non-singular, we have TU1(w)=0TU^{-1}(w)=0 for all wWw∈W, given any vVv∈V, we can have some wWw∈W s.t. U1(w)=vU^{-1}(w)=v, so Tv=0Tv=0 for all vVv∈V, thus TT is the zero transformation.
    For any ML(W,W)M'∈L(W,W), if we choose a basis w1,,wnw_1,…,w_n of WW, then MM' can be written as
    M(wi)=ai1w1++ainwn,i=1,,nM'(w_i)=a_{i1} w_1+⋯+a_{in} w_n,\quad i=1,…,n
    Notice that U1(w1),,U1(wn)U^{-1} (w_1),…,U^{-1}(w_n) is a basis for VV, so if we define
    T(U1(wi))=ai1U1(w1)++ainU1(wn),i=1,,nT(U^{-1}(w_i))=a_{i1} U^{-1}(w_1)+\cdots+a_{in}U^{-1}(w_n),\quad i=1,…,n
    then TL(V,V)T∈L(V,V), and we have
    UTU1(wi)=U(ai1U1(w1)++ainU1(wn))=ai1w1++ainwn,i=1,,n\begin{aligned}UTU^{-1}(w_i )&=U(a_{i1}U^{-1}(w_1)+\cdots+a_{in}U^{-1}(w_n))\\&=a_{i1} w_1+\cdots+a_{in}w_n,\quad i=1,…,n\end{aligned}
    this means M(T)=UTU1=MM(T)=UTU^{-1}=M', thus M(T)M(T) is onto and the proof is complete.

发布了75 篇原创文章 · 获赞 5 · 访问量 2024


©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客