5.2 Determinant Functions

这一节开始讲行列式。行列式是在一个commutative ring上满足 n n n-linear,alternating和 D ( I ) = 1 D(I)=1 D(I)=1的函数,而书里的处理是分别把 n n n-linear,alternating都显式定义出来,并在定义伴随矩阵后,在Theorem 1中显式给出了一个计算 n n n阶行列式的公式,本节并没有涉及行列式是否唯一的证明,但给了2阶、3阶行列式的具体公式。

Exercises

1.Each of the following expressions defines a function D D D on the set of 3 × 3 3\times 3 3×3 matrices over the field of real numbers. In which of these cases is D D D a 3 3 3-linear function?
( a ) D ( A ) = A 11 + A 22 + A 33 D(A)=A_{11}+A_{22}+A_{33} D(A)=A11+A22+A33;
( b ) D ( A ) = ( A 11 ) 2 + 3 A 11 A 22 D(A)=(A_{11})^2+3A_{11}A_{22} D(A)=(A11)2+3A11A22;
( c ) D ( A ) = A 11 A 22 A 33 D(A)=A_{11}A_{22}A_{33} D(A)=A11A22A33;
( d ) D ( A ) = A 13 A 22 A 32 + 5 A 12 A 22 A 32 D(A)=A_{13}A_{22}A_{32}+5A_{12}A_{22}A_{32} D(A)=A13A22A32+5A12A22A32;
( e ) D ( A ) = 0 D(A)=0 D(A)=0;
( f ) D ( A ) = 1 D(A)=1 D(A)=1.

Solution: Cases ( a ),( c ), ( d ) and ( e ) are. For case ( b ), D D D is not linear with the first row and the third row, and for case ( f ), D D D is not linear with all rows.

2.Verify directly that the three functions E 1 , E 2 , E 3 E_1,E_2,E_3 E1,E2,E3 defined by (5-6),(5-7) and (5-8) are identical.
Solution: A direct calculation shows the result.

3.Let K K K be a commutative ring with identity. If A A A is a 2 × 2 2\times 2 2×2 matrix over K K K, the classical adjoint of A A A is the 2 × 2 2\times 2 2×2 matrix adj  A \text{adj } A adj A defined by
adj  A = [ A 22 − A 12 − A 21 A 11 ] \text{adj }A=\begin{bmatrix}A_{22}&-A_{12}\\-A_{21}&A_{11}\end{bmatrix} adj A=[A22A21A12A11]
If det ⁡ \det det denotes the unique determinant function on 2 × 2 2\times 2 2×2 matrices over K K K, show that
( a ) ( adj  A ) A = A ( adj  A ) = ( det ⁡ A ) I (\text{adj }A)A=A(\text{adj }A)=(\det A)I (adj A)A=A(adj A)=(detA)I;
( b ) det ⁡ ( adj  A ) = det ⁡ ( A ) \det (\text{adj }A)=\det (A) det(adj A)=det(A);
( c ) adj  ( A t ) = ( adj  A ) t \text{adj }(A^t)=(\text{adj }A)^t adj (At)=(adj A)t. ( A t A^t At denotes the transpose of A A A.)

Solution:
( a ) We have
( adj  A ) A = [ A 22 − A 12 − A 21 A 11 ] [ A 11 A 12 A 21 A 22 ] = [ A 11 A 22 − A 12 A 21 0 0 A 11 A 22 − A 12 A 21 ] A ( adj  A ) = [ A 11 A 12 A 21 A 22 ] [ A 22 − A 12 − A 21 A 11 ] = [ A 11 A 22 − A 12 A 21 0 0 A 11 A 22 − A 12 A 21 ] (\text{adj }A)A=\begin{bmatrix}A_{22}&-A_{12}\\-A_{21}&A_{11}\end{bmatrix}\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}=\begin{bmatrix}A_{11}A_{22}-A_{12}A_{21}&0\\0&A_{11}A_{22}-A_{12}A_{21}\end{bmatrix} \\ A(\text{adj }A)=\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}\begin{bmatrix}A_{22}&-A_{12}\\-A_{21}&A_{11}\end{bmatrix}=\begin{bmatrix}A_{11}A_{22}-A_{12}A_{21}&0\\0&A_{11}A_{22}-A_{12}A_{21}\end{bmatrix} (adj A)A=[A22A21A12A11][A11A21A12A22]=[A11A22A12A2100A11A22A12A21]A(adj A)=[A11A21A12A22][A22A21A12A11]=[A11A22A12A2100A11A22A12A21]
and the conclusion follows.
( b ) It is easy to see that
det ⁡ ( adj  A ) = A 22 A 11 − ( − A 12 ) ( − A 21 ) = A 11 A 22 − A 12 A 21 = det ⁡ ( A ) \det (\text{adj }A)=A_{22}A_{11}-(-A_{12})(-A_{21})=A_{11}A_{22}-A_{12}A_{21}=\det (A) det(adj A)=A22A11(A12)(A21)=A11A22A12A21=det(A)
( c ) A direct verification shows the result.

4.Let A A A be a 2 × 2 2\times 2 2×2 matrix over a field F F F. Show that A A A is invertible if and only if det ⁡ A ≠ 0 \det A\neq 0 detA=0. When A A A is invertible, give a formula for A − 1 A^{-1} A1.
Solution: If det ⁡ A ≠ 0 \det A\neq 0 detA=0, Exercise 3(a) shows that A A A is invertible, since F F F is a field. On the other hand, if A A A is invertible, and assume det ⁡ A = A 11 A 22 − A 12 A 21 = 0 \det A=A_{11}A_{22}-A_{12}A_{21}=0 detA=A11A22A12A21=0, then at least one of A 11 , A 22 , A 12 , A 21 A_{11},A_{22},A_{12},A_{21} A11,A22,A12,A21 is not 0, thus one of X = [ A 22 − A 21 ] X=\begin{bmatrix}A_{22}\\-A_{21}\end{bmatrix} X=[A22A21] or X ′ = [ A 12 − A 11 ] X'=\begin{bmatrix}A_{12}\\-A_{11}\end{bmatrix} X=[A12A11] is not zero, but one can see that when det ⁡ A = 0 \det A=0 detA=0, A X = 0 AX=0 AX=0 and A X ′ = 0 AX'=0 AX=0, thus A A A is not invertible, a contradiction.
When A A A is invertible, one formula of A − 1 A^{-1} A1 can be given from Exercise 3(a) to be A − 1 = ( det ⁡ A ) − 1 ( adj  A ) A^{-1}=(\det A)^{-1}(\text{adj }A) A1=(detA)1(adj A).

5.Let A A A be a 2 × 2 2\times 2 2×2 matrix over a field F F F, and suppose that A 2 = 0 A^2=0 A2=0. Show for each scalar c c c that det ⁡ ( c I − A ) = c 2 \det (cI-A)=c^2 det(cIA)=c2.
Solution: If A = 0 A=0 A=0 the concusion is obviously right. Now suppose A ≠ 0 A\neq 0 A=0, we have
A 2 = [ A 11 A 12 A 21 A 22 ] [ A 11 A 12 A 21 A 22 ] = [ A 11 2 + A 12 A 21 A 12 ( A 11 + A 22 ) A 21 ( A 11 + A 22 ) A 12 A 21 + A 22 2 ] A^2=\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}=\begin{bmatrix}A_{11}^2+A_{12}A_{21}&A_{12}(A_{11}+A_{22})\\A_{21}(A_{11}+A_{22})&A_{12}A_{21}+A_{22}^2\end{bmatrix} A2=[A11A21A12A22][A11A21A12A22]=[A112+A12A21A21(A11+A22)A12(A11+A22)A12A21+A222]
solve the equation
{ A 11 2 + A 12 A 21 = 0 A 12 ( A 11 + A 22 ) = 0 A 21 ( A 11 + A 22 ) = 0 A 12 A 21 + A 22 2 = 0 \begin{cases}A_{11}^2+A_{12}A_{21}=0\\A_{12}(A_{11}+A_{22})=0\\A_{21}(A_{11}+A_{22})=0\\A_{12}A_{21}+A_{22}^2=0 \end{cases} A112+A1<

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值