这一节是一个没有习题的阶段性总结,但也相对重要。首先定义了row rank,即row space的维度。然后用比较易懂的方式说明Theorem 9:row-equivalent的矩阵有相同的row space(所以有相同的row rank),Theorem 10解释了row-reduced echelon matrix在描述row space时的重要性,非零行可以直接作为row space的一组基,这主要是由于row-reduced echelon有非常好的特性(线性无关)。Theorem 11是一个很有意思的结论,其说明了小于等于m维的 F n F^n Fn的subspace和 m × n m\times n
2.5 Summary of Row-Equivalence
最新推荐文章于 2022-10-15 16:12:21 发布
