这一节是一个总结(summary)和一部分新的内容即semi-simple operator。
总结部分是对第6章和第7章的一个高度概括,叙述很简练有效,值得原样照搬:
We began to study T T T by means of characteristic values and characteristic vectors. We introduced diagonalizable operators, the operators which can be completely described in terms of characteristic values and vectors. We then observed that T T T might not have a single characteristic vector. Even in the case of an algebraically closed scalar field, when every linear operator does have at least one characteristic vector, we noted that the characteristic vectors of T T T need not span the space.
We then proved the cyclic decomposition theorem, expressing any linear operator as the direct sum of operators with a cyclic vector, with no assumption about the scalar field. If U U U is a linear operator with a cyclic vector, there is a basis { α 1 , … , α n } \{\alpha_1,\dots,\alpha_n\} {
α1,…,αn} with
U α j = α j + 1 , j = 1 , … , n − 1 U α n = − c 0 α 1 − c 1 α 2 − ⋯ − c n − 1 α n . U\alpha_j=\alpha_{j+1},\quad j=1,\dots,n-1 \\ U\alpha_n=-c_0\alpha_1-c_1\alpha_2-\cdots -c_{n-1}\alpha_n. Uαj=αj+1,j=1,…,n−1Uαn=−c0α1−c1α2−⋯−cn−1αn.
The action of U U U on this basis is then to shift each α j \alpha_j αj to the next vector α j + 1 \alpha_{j+1} αj+1, except that U α n U\alpha_n Uαn is some prescribed linear combination of the vectors in the basis. Since the general linear operator T T T is the direct sum of a finite number of such operators U U U, we obtained an explicit and reasonably elementary description of the action of T T T.
We next applied the cyclic decomposition theorem to nilpotent operators. For the case of an algebraically closed scalar field, we combined this with the primary decomposition theorem to obtain the Jordan form. The Jordan form gives a basis { α 1
7.5 Summary; Semi-Simple Operators
最新推荐文章于 2024-08-19 19:55:55 发布