TCBB|用于预测miRNA-疾病关联的深度学习方法综述:数据库、计算方法、挑战和未来方向(综述)

作者 | sn


今天给大家介绍我们最近接收的一篇关于miRNA-疾病关联预测的综述文章,来自吉林大学黄岚教授、王岩教授团队在期刊《IEEE/ACM Transactions on Computational Biology and Bioinformatics》发表题为“A Survey of Deep Learning for Detecting miRNA-Disease Associations: Databases, Computational Methods, Challenges, and Future Directions的论文。该篇文章是继之前发表的关于lncRNA-疾病关联预测以及lncRNA-miRNA互作预测系列综述的最后一篇文章,从前年11月份完成折腾到现在才被接收,以上两篇详情见:

CBM|用于lncRNA-疾病关联预测的数据资源和计算方法(综述)

TCBB|用于lncRNA-miRNA相互作用预测的计算方法和数据库的调查(综述)

简介

MicroRNAs (miRNAs)是一类重要的非编码RNA,在各种疾病的发生发展中起着至关重要的作用。确定潜在的miRNA-疾病关联(MDAs)有助于了解疾病的发病机制。传统的实验室实验既昂贵又耗时。计算模型在系统地探索潜在MDAs方面取得了重大进展,大大提高了生物学实验的效率。近年来,随着深度学习的发展,它已经成为一种有吸引力和有效的识别潜在MDAs技术。基于深度学习的MDA预测方法越来越多。在这篇综述中,我们总结了现有的与miRNA和疾病相关的公开数据库,用于MDA预测。接下来,我们概述了常用的miRNA和疾病相似度的计算和整合方法。然后,我们全面回顾了现有的48种基于深度学习的MDA计算方法,将它们分为经典的深度学习和基于图神经网络的技术。随后,我们研究了经常用于评估MDA预测性能的评估方法和度量。最后,讨论了不同计算方法的性能趋势,指出了目前研究中存在的问题,并提出了未来可能的9个研究方向。数据资源和MDA预测方法的最新进展在GitHub存储库https://github.com/sheng-n/DL-miRNA-disease-association-methods中进行了总结。

  • Data resources

  • Computational methods for MDA prediction

个人总结

(1)前年在写该篇文章的过程中发现陈兴老师发表了三篇关于MDA的综述,分别从数据库,计算方法、评价指标三个维度重新总结并更新了当下关于MDA的发展。后来我们改成只聚焦近几年较为热点的深度学习在MDA预测上的应用,包括AE、CNN、MLP、GCN、GAT等计算方法。我们将其做了一个总结并把它们放在github中,方便相关研究人员和初学者查找相关领域进展。

(2)这篇综述采用了和lncRNA-miRNA的综述相似的风格来写的:1)单独简述了每个计算方法,并给出了关键公式。2)单独总结了当前研究的不足及研究方向,包括以下几点:Data quality、Negative sample selection、Model interpretability、Multi-view learning、Receptive Field、Dynamicity、Meta-path and regulatory path、Deregulation types prediction、Computational and experimental integration。当然还有一些其他问题,由于知识有限就没有总结到。

参考资料:

Sheng N, Xie X, Wang Y et al. A Survey of Deep Learning for Detecting miRNA-Disease Associations: Databases, Computational Methods, Challenges, and Future Directions, IEEE/ACM Transactions on Computational Biology and Bioinformatics 2024, doi: 10.1109/TCBB.2024.3351752.

文章地址:

https://doi.org/10.1109/TCBB.2024.3351752

Github地址:

https://github.com/sheng-n/DL-miRNA-disease-association-methods

欢迎向本公众号投稿文献解读类原创文章,可以是自己or自己组的论文,也可以是阅读觉得不错的论文。投稿邮箱:nan_sheng@yeah.net。

扫码关注我们

### TCBB in IT Context TCBB通常指的是《IEEE Transactions on Computational Biology and Bioinformatics》(简称TCBB),这是一个专注于计算生物学生物信息学交叉领域研究的学术期刊。该期刊涵盖了算法设计、数据分析技术以及高性能计算在生命科学中的应用等内容[^1]。 #### 计算生物学与生物信息学的关系 计算生物学涉及开发应用数据解析工具来模拟复杂的生物系统,而生物信息学则更侧重于利用计算机科学技术处理大规模分子序列其他类型的实验产生的海量数据集。两者共同构成了现代生命科学研究的重要组成部分。 #### 技术实现层面的关键概念 为了更好地理解如何通过编程手段解决实际问题,在此提供一段简单的Python脚本用于演示基本的数据预处理流程: ```python import pandas as pd def preprocess_data(file_path): df = pd.read_csv(file_path) cleaned_df = df.dropna() # 移除缺失值 normalized_df = (cleaned_df - cleaned_df.mean()) / cleaned_df.std() return normalized_df if __name__ == "__main__": file_name = 'bio_data.csv' result = preprocess_data(file_name) print(result.head()) ``` 上述代码展示了如何加载CSV文件并对其进行清洗及标准化操作,这是许多生物信息分析项目的第一步。 #### 高性能计算的需求 由于涉及到大量基因组或者蛋白质结构的信息存储与检索工作,因此对于高效能运算资源有着强烈需求。分布式架构下的MapReduce模型可以有效提升此类任务执行效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值